Better bounds on the numerical radii of Hilbert space operators

被引:32
作者
Omidvar, Mohsen Erfanian [1 ]
Moradi, Hamid Reza [2 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Razavi Khorasan, Iran
[2] Islamic Azad Univ, Mashhad Branch, Young Researchers & Elite Club, Mashhad, Razavi Khorasan, Iran
关键词
Numerical radius; Operator norm; Operator convex function; Hermite-Hadamard inequality; NORM INEQUALITIES;
D O I
10.1016/j.laa.2020.06.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kittaneh proved that if A is a bounded linear operator on a complex Hilbert space, then 1/4 parallel to vertical bar A vertical bar(2) + vertical bar A*vertical bar(2)parallel to <= omega(2) (A), where omega(.) and parallel to.parallel to are the numerical radius and the usual operator norm, and vertical bar A vertical bar = (A*A)(1/2). In this paper, we show that 1/4 parallel to vertical bar A vertical bar(2) + vertical bar A vertical bar(2)parallel to <= 1/2 omega(2) (A)+1/8 parallel to(A+A*) (A-A*)parallel to <=omega(2) (A) Meanwhile, we give an improvement of the norm inequality presented by Bhatia and Kittaneh for the positive operators. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 277
页数:13
相关论文
共 17 条
[1]   Weak majorization inequalities and convex functions [J].
Aujla, JS ;
Silva, FC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :217-233
[2]   Norm inequalities for positive operators [J].
Bhatia, R ;
Kittaneh, F .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (03) :225-231
[3]   The matrix arithmetic-geometric mean inequality revisited [J].
Bhatia, Rajendra ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :2177-2191
[4]   Hermite-Hadamard's type inequalities for operator convex functions [J].
Dragomir, S. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :766-772
[5]  
Dragomir S. S., 2009, Sarajevo J. Math., V5, P269
[6]   Numerical radius inequalities for Hilbert space operators. II [J].
El-Haddad, Mohammad ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2007, 182 (02) :133-140
[7]  
Furuta T., 2005, Monographs in Inequalities
[8]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147
[9]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[10]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17