Non-anti-hermitian Quaternionic Quantum Mechanics

被引:23
作者
Giardino, Sergio [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, Ave Bento Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil
关键词
PSEUDO-HERMITICITY; SYMMETRY;
D O I
10.1007/s00006-018-0819-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The breakdown of Ehrenfest's theorem imposes serious limitations on quaternionic quantum mechanics (QQM). In order to determine the conditions in which the theorem is valid, we examined the conservation of the probability density, the expectation value and the classical limit for a non-anti-hermitian formulation of QQM. The results also indicated that the non-anti-hermitian quaternionic theory is related to non-hermitian quantum mechanics, and thus the physical problems described with both of the theories should be related.
引用
收藏
页数:11
相关论文
共 34 条
[1]  
Adler S. L., 1988, QUANTUM MECH FUNDAME, V1
[2]  
ADLER SL, 1986, COMMUN MATH PHYS, V104, P611, DOI 10.1007/BF01211069
[3]  
Adler SL., 1995, QUATERNIONIC QUANTUM
[4]   The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum [J].
Alpay, Daniel ;
Colombo, Fabrizio ;
Kimsey, David P. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
[5]  
[Anonymous], 2016, INTRO CLIFFORD ALGEB
[6]  
Atiyah M. F., 1979, Geometry on Yang-Mills fields
[7]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[8]   Alternative descriptions in quaternionic quantum mechanics [J].
Blasi, A ;
Scolarici, G ;
Solombrino, L .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)
[9]   Quasianti-hermiticity and quaternionic quantum systems [J].
Blasi, A ;
Scolarici, G ;
Solombrino, L .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) :1055-1059
[10]   OBSERVABILITY OF QUATERNIONIC QUANTUM-MECHANICS [J].
DAVIES, AJ ;
MCKELLAR, BHJ .
PHYSICAL REVIEW A, 1992, 46 (07) :3671-3675