COMPATIBLE ALGEBRA STRUCTURES OF LIE ALGEBRAS

被引:0
|
作者
Kubo, F. [1 ]
机构
[1] Hiroshima Univ, Dept Appl Math, Grad Sch Engn, Higashihiroshima 724, Japan
来源
RING THEORY 2007, PROCEEDINGS | 2009年
关键词
Lie Algebra; Poisson Algebra;
D O I
10.1142/9789812818331_0020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A compatible algebra products of a finite-dimensional semisimple Lie algebra g with a Lie bracket [-, -] are studied. If g is simple of type A(1) or not of type A(n) of n >= 2, then the compatible algebra products must be the scalar multiples of the Lie bracket [-, -]. In case that g is simple of type A(n) of n >= 2, such a product is a sum of a scalar multiple of [-, -] and a deformed one of the ordinal associative products on the full (n + 1) x (n + 1) matix algebra. Then we give a alternative proof to the triviality of the compatible associative algebra structures of a semisimple Lie algebra g.
引用
收藏
页码:235 / 239
页数:5
相关论文
共 50 条