机构:
Hiroshima Univ, Dept Appl Math, Grad Sch Engn, Higashihiroshima 724, JapanHiroshima Univ, Dept Appl Math, Grad Sch Engn, Higashihiroshima 724, Japan
Kubo, F.
[1
]
机构:
[1] Hiroshima Univ, Dept Appl Math, Grad Sch Engn, Higashihiroshima 724, Japan
来源:
RING THEORY 2007, PROCEEDINGS
|
2009年
关键词:
Lie Algebra;
Poisson Algebra;
D O I:
10.1142/9789812818331_0020
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A compatible algebra products of a finite-dimensional semisimple Lie algebra g with a Lie bracket [-, -] are studied. If g is simple of type A(1) or not of type A(n) of n >= 2, then the compatible algebra products must be the scalar multiples of the Lie bracket [-, -]. In case that g is simple of type A(n) of n >= 2, such a product is a sum of a scalar multiple of [-, -] and a deformed one of the ordinal associative products on the full (n + 1) x (n + 1) matix algebra. Then we give a alternative proof to the triviality of the compatible associative algebra structures of a semisimple Lie algebra g.
机构:
Univ Complutense, Fac CC Matemat, Dipartimento Geometr & Topol, E-28040 Madrid, SpainUniv Complutense, Fac CC Matemat, Dipartimento Geometr & Topol, E-28040 Madrid, Spain