Differential heat sensitivity of two cool-season legumes, chickpea and lentil, at the reproductive stage, is associated with responses in pollen function, photosynthetic ability and oxidative damage

被引:18
作者
Bhandari, Kalpna [1 ]
Sita, Kumari [1 ]
Sehgal, Akanksha [1 ,8 ]
Bhardwaj, Anjali [1 ]
Gaur, Pooran [2 ]
Kumar, Shiv [3 ]
Singh, Sarvjeet [4 ]
Siddique, Kadambot H. M. [5 ]
Prasad, P. V. Vara [6 ]
Jha, Uday [7 ]
Nayyar, Harsh [1 ]
机构
[1] Panjab Univ, Dept Bot, Chandigarh 160014, India
[2] Int Crops Res Inst Semi Arid Trop, Hyderabad, Telangana, India
[3] ICARDA, Rabat, Morocco
[4] Punjab Agr Univ, Ludhiana, Punjab, India
[5] Univ Western Australia, UWA Inst Agr, Perth, WA, Australia
[6] Kansas State Univ, Manhattan, KS 66506 USA
[7] Indian Inst Pulses Res, Kanpur, Uttar Pradesh, India
[8] Mississippi State Univ, Dept Plant & Soil Sci, Mississippi, MS USA
关键词
carbon fixation; high temperature; legumes; pollen; pulses; stress; CICER-ARIETINUM-L; CHLOROPHYLL FLUORESCENCE; HIGH-TEMPERATURES; STRESS TOLERANCE; LYCOPERSICON-ESCULENTUM; PHYSIOLOGICAL PROCESSES; GLUTATHIONE-REDUCTASE; SUPEROXIDE-DISMUTASE; LIPID-PEROXIDATION; THERMAL-STABILITY;
D O I
10.1111/jac.12433
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Increasing temperatures are adversely affecting various food crops, including legumes, and this issue requires attention. The growth of two cool-season food legumes, chickpea and lentil, is inhibited by high temperatures but their relative sensitivity to heat stress and the underlying reasons have not been investigated. Moreover, the high-temperature thresholds for these two legumes have not been well-characterised. In the present study, three chickpea (ICCVO7110, ICC5912 and ICCV92944) and two lentil (LL699 and LL931) genotypes, having nearly similar phenology with respect to flowering, were grown at 30/20 degrees C (day/night; control) until the onset of flowering and subsequently exposed to varying high temperatures (35/25, 38/28, 40/30 and 42/32 degrees C; day/night) in a controlled environment (growth chamber; 12 hr/12 hr; light intensity 750 mu mol m(-2) s(-1); RH-70%) at 108 days after sowing for both the species. Phenology (podding, maturity) was accelerated in both the species; the days to podding declined more in lentil at 35/25 (2.8 days) and 38/28 degrees C (11.3 days) than in chickpea (1.7 and 7.1 days, respectively). Heat stress decreased flowering-podding and podding-maturity intervals considerably in both the species. At higher temperatures, no podding was observed in lentil, while chickpea showed reduction of 14.9 and 16.1 days at 40/30 and 42/32 degrees C, respectively. Maturity was accelerated on 15.3 and 12.5 days at 38/28 degrees C, 33.6 and 34 days at 40/30 degrees C and 45.6 and 47 days at 42/32 degrees C, in chickpea and lentil, respectively. Consequently, biomass decreased considerably at 38/28 degrees C in both the species to limit the yield-related traits. Lentil was significantly more sensitive to heat stress, with the damage-assessed as reduction in biomass, reproductive function-related traits (pollen viability, germination, pollen tube growth and stigma receptivity), leaf traits such as membrane injury, leaf water status, photochemical efficiency, chlorophyll concentration, carbon fixation and assimilation, and oxidative stress, appearing even at 35/25 degrees C, compared with 38/28 degrees C, in chickpea. The expression of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and non-enzymatic antioxidants declined remarkably with heat stress, more so in lentil than in chickpea. Carbon fixation (assessed as Rubisco activity) and assimilation (assessed as sucrose concentration, sucrose synthase activity) were also reduced more in lentil than in chickpea, at all the stressful temperatures, resulting in more inhibition of plant biomass (shoot + roots), damage to reproductive function and severe reduction in pods and seeds. At 38/28 degrees C, lentil showed 43% reduction in biomass, while it declined by 17.2% in chickpea at the same time, over the control temperature (30/20 degrees C). At this temperature, lentil showed 53% and 46% reduction in pods and seed yield, compared to 13.4% and 22% decrease in chickpea at the same temperature. At 40/30 degrees C, lentil did not produce any pods, while chickpea was able to produce few pods at this temperature. This study identified that lentil is considerably more sensitive to heat stress than chickpea, as a result of more damage to leaves (photosynthetic ability; oxidative injury) and reproductive components (pollen function, etc.) at 35/25 degrees C and above, at controlled conditions.
引用
收藏
页码:734 / 758
页数:25
相关论文
共 71 条
  • [1] DIFFERENTIAL STAINING OF ABORTED AND NONABORTED POLLEN
    ALEXANDER, MP
    [J]. STAIN TECHNOLOGY, 1969, 44 (03): : 117 - +
  • [2] Almeselmani M., 2009, Acta Agronomica Hungarica, V57, P1, DOI 10.1556/AAgr.57.2009.1.1
  • [3] Almeselmani M., 2009, CROP PRODUCTION DIVE
  • [4] Genetic Variation for Heat Tolerance During the Reproductive Phase in Brassica rapa
    Annisa
    Chen, S.
    Turner, N. C.
    Cowling, W. A.
    [J]. JOURNAL OF AGRONOMY AND CROP SCIENCE, 2013, 199 (06) : 424 - 435
  • [5] COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS
    ARNON, DI
    [J]. PLANT PHYSIOLOGY, 1949, 24 (01) : 1 - 15
  • [6] Temperature stress and redox homeostasis in agricultural crops
    Awasthi, Rashmi
    Bhandari, Kalpna
    Nayyar, Harsh
    [J]. FRONTIERS IN ENVIRONMENTAL SCIENCE, 2015, 3
  • [7] Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea
    Awasthi, Rashmi
    Kaushal, Neeru
    Vadez, Vincent
    Turner, Neil C.
    Berger, Jens
    Siddique, Kadambot H. M.
    Nayyar, Harsh
    [J]. FUNCTIONAL PLANT BIOLOGY, 2014, 41 (10-11) : 1148 - 1167
  • [8] The effect of drought and heat stress on reproductive processes in cereals
    Barnabas, Beata
    Jaeger, Katalin
    Feher, Attila
    [J]. PLANT CELL AND ENVIRONMENT, 2008, 31 (01) : 11 - 38
  • [9] A RE-EXAMINATION OF RELATIVE TURGIDITY TECHNIQUE FOR ESTIMATING WATER DEFICITS IN LEAVES
    BARRS, HD
    WEATHERLEY, PE
    [J]. AUSTRALIAN JOURNAL OF BIOLOGICAL SCIENCES, 1962, 15 (03) : 413 - &
  • [10] Susceptibility of Faba Bean (Vicia faba L.) to Heat Stress During Floral Development and Anthesis
    Bishop, J.
    Potts, S. G.
    Jones, H. E.
    [J]. JOURNAL OF AGRONOMY AND CROP SCIENCE, 2016, 202 (06) : 508 - 517