Singular time changes of diffusions on Sierpinski carpets

被引:2
|
作者
Osada, H [1 ]
机构
[1] Kyushu Univ 33, Grad Sch Math, Fukuoka 8128581, Japan
关键词
diffusion; Sierpinski carpet; fractal; time change; Dirichlet form;
D O I
10.1016/j.spa.2005.11.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study we construct self-similar diffusions on the Sierpinski carpet that are reversible with respect to the Hausdorff measure. The diffusions are obtained from self-similar diffusions reversible with respect to self-similar measures, which are singular to the Hausdorff measure. To do this we introduce a new sufficient condition for the continuity of sample paths to be preserved by a singular time change. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [41] Homeomorphism groups of Sierpinski carpets and Erdos space
    Dijkstra, Jan J.
    Visser, Dave
    FUNDAMENTA MATHEMATICAE, 2010, 207 (01) : 1 - 19
  • [42] Resistance in higher-dimensional Sierpinski carpets
    McGillivray, I
    POTENTIAL ANALYSIS, 2002, 16 (03) : 289 - 303
  • [43] The Einstein relation for finitely ramified Sierpinski carpets
    Franz, A
    Schulzky, C
    Hoffmann, KH
    NONLINEARITY, 2001, 14 (05) : 1411 - 1418
  • [44] HIGH-TEMPERATURE EXPANSIONS ON SIERPINSKI CARPETS
    BONNIER, B
    LEROYER, Y
    MEYERS, C
    PHYSICAL REVIEW B, 1989, 40 (13): : 8961 - 8966
  • [45] ANTIFERROMAGNETIC POTTS-MODEL ON SIERPINSKI CARPETS
    BAKCHICH, A
    BENYOUSSEF, A
    BOCCARA, N
    JOURNAL DE PHYSIQUE I, 1992, 2 (01): : 41 - 54
  • [46] Lipschitz equivalence of a class of general Sierpinski carpets
    Wen, Zhixiong
    Zhu, Zhiyong
    Deng, Guotai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 16 - 23
  • [47] Modelling porous structures by repeated Sierpinski carpets
    Tarafdar, S
    Franz, A
    Schulzky, C
    Hoffmann, KH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 292 (1-4) : 1 - 8
  • [48] Properties of measures supported on fat Sierpinski carpets
    Jordan, Thomas
    Pollicott, Mark
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 : 739 - 754
  • [49] Dimension of slices of Sierpinski-like carpets
    Barany, Balazs
    Rams, Michal
    JOURNAL OF FRACTAL GEOMETRY, 2014, 1 (03) : 273 - 294
  • [50] Critical behaviour of the Gaussian model on Sierpinski carpets
    Lin, ZQ
    Kong, XM
    CHINESE PHYSICS LETTERS, 2001, 18 (07) : 882 - 884