Singular time changes of diffusions on Sierpinski carpets

被引:2
|
作者
Osada, H [1 ]
机构
[1] Kyushu Univ 33, Grad Sch Math, Fukuoka 8128581, Japan
关键词
diffusion; Sierpinski carpet; fractal; time change; Dirichlet form;
D O I
10.1016/j.spa.2005.11.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study we construct self-similar diffusions on the Sierpinski carpet that are reversible with respect to the Hausdorff measure. The diffusions are obtained from self-similar diffusions reversible with respect to self-similar measures, which are singular to the Hausdorff measure. To do this we introduce a new sufficient condition for the continuity of sample paths to be preserved by a singular time change. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [1] Uniformization of Sierpinski Carpets by Square Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 91 - 177
  • [2] Quantum transport in Sierpinski carpets
    van Veen, Edo
    Yuan, Shengjun
    Katsnelson, Mikhail I.
    Polini, Marco
    Tomadin, Andrea
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [3] Harmonic Functions on Sierpinski Carpets
    Ntalampekos, Dimitrios
    POTENTIAL THEORY ON SIERPINSKI CARPETS: WITH APPLICATIONS TO UNIFORMIZATION, 2020, 2268 : 9 - 89
  • [4] The pore structure of Sierpinski carpets
    Franz, A
    Schulzky, C
    Tarafdar, S
    Hoffmann, KH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42): : 8751 - 8765
  • [5] On Sierpinski carpets and doubling measures
    Peng, Fengji
    Wen, Shengyou
    NONLINEARITY, 2014, 27 (06) : 1287 - 1298
  • [6] MULTIFRACTAL ANALYSIS OF SIERPINSKI CARPETS
    KIM, JH
    YOON, DH
    KIM, I
    KIM, MH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S402 - S405
  • [7] A class of Sierpinski carpets with overlaps
    Zou, Yuru
    Yao, Yuanyuan
    Li, Wenxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1422 - 1432
  • [8] Connected generalised Sierpinski carpets
    Cristea, Ligia Loreta
    Steinsky, Bertran
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (07) : 1157 - 1162
  • [9] THE HAUSDORFF DIMENSION OF GENERAL SIERPINSKI CARPETS
    MCMULLEN, C
    NAGOYA MATHEMATICAL JOURNAL, 1984, 96 (DEC) : 1 - 9
  • [10] Non-Removability of Sierpinski Carpets
    Ntalampekos, Dimitrios
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) : 847 - 854