Laser powder bed fusion of WC-reinforced Hastelloy-X composite: microstructure and mechanical properties

被引:36
作者
Han, Quanquan [1 ,2 ]
Gu, Yuchen [3 ]
Gu, Heng [4 ]
Yin, Yingyue [1 ,2 ]
Song, Jun [5 ]
Zhang, Zhenhua [1 ,2 ]
Soe, Shwe [6 ]
机构
[1] Shandong Univ, Sch Mech Engn, Ctr Addit Mfg,Minist Educ, Key Lab High Efficiency & Clean Mech Manufacture, Jinan 250061, Peoples R China
[2] Shandong Univ, Key Natl Demonstrat Ctr Expt Mech Engn Educ, Jinan 250061, Peoples R China
[3] Swansea Univ, Coll Engn, Swansea SA1 8EN, W Glam, Wales
[4] Cardiff Univ, Cardiff Sch Engn, Cardiff CF24 3AA, Wales
[5] Chongqing Univ, Coll Mech Engn, Chongqing, Peoples R China
[6] Univ West England, Dept Engn Design & Math, Bristol BS16 1QY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
METAL-MATRIX NANOCOMPOSITES; INCONEL; 718; HEAT-TREATMENT; PROCESS PARAMETERS; ALLOY; BEHAVIOR; CARBIDE; SUPERALLOYS; ABSORPTION; SIMULATION;
D O I
10.1007/s10853-020-05327-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nickel-based superalloys such as Hastelloy X (HX) are widely used in gas turbine engines for their exceptional oxidation resistance and high-temperature strength. The addition of ceramic reinforcement further enhances these superalloys' mechanical performance and high-temperature properties. For this reason, this paper investigates the microstructure and mechanical property of laser powder bed fusion (LPBF) additively manufactured HX-1 wt% WC (tungsten carbide) composite specimens. The results demonstrate that the LPBF-fabricated composite was observed to have several pores and microcracks, whilst only pores were detected in the as-fabricated pure HX. Compared to the fabricated pure HX, the tensile yield strength of such HX composite parts was increased by 13% without undue sacrifices to ductility, suggesting that the very limited number of microcracks were not sufficient to degrade the mechanical performance. The significantly increased dislocations were considered to be the primary contributor for the mechanical performance enhancement in the LPBF-fabricated composite material. The findings offer a promising pathway to employ LPBF process to fabricate advanced microcrack-free composites with high-strength through a careful selection of ceramic reinforcement materials.
引用
收藏
页码:1768 / 1782
页数:15
相关论文
共 53 条
[1]  
Aboulkhair NT, 2014, Addit. Manuf, V1-4, P77, DOI DOI 10.1016/J.ADDMA.2014.08.001
[2]   Spatter formation in selective laser melting process using multi-laser technology [J].
Andani, Mohsen Taheri ;
Dehghani, Reza ;
Karamooz-Ravari, Mohammad Reza ;
Mirzaeifar, Reza ;
Ni, Jun .
MATERIALS & DESIGN, 2017, 131 :460-469
[3]   Analysis of laser absorption on a rough metal surface [J].
Ang, LK ;
Lau, YY ;
Gilgenbach, RM ;
Spindler, HL .
APPLIED PHYSICS LETTERS, 1997, 70 (06) :696-698
[4]   Additive manufacturing of Ni-based superalloys: The outstanding issues [J].
Attallah, Moataz M. ;
Jennings, Rachel ;
Wang, Xiqian ;
Carter, Luke N. .
MRS BULLETIN, 2016, 41 (10) :758-764
[5]   Revealing internal flow behaviour in arc welding and additive manufacturing of metals [J].
Aucott, Lee ;
Dong, Hongbiao ;
Mirihanage, Wajira ;
Atwood, Robert ;
Kidess, Anton ;
Gao, Shian ;
Wen, Shuwen ;
Marsden, John ;
Feng, Shuo ;
Tong, Mingming ;
Connolley, Thomas ;
Drakopoulos, Michael ;
Kleijn, Chris R. ;
Richardson, Ian M. ;
Browne, David J. ;
Mathiesen, Ragnvald H. ;
Atkinson, Helen. V. .
NATURE COMMUNICATIONS, 2018, 9
[6]   Calculation of laser absorption by metal powders in additive manufacturing [J].
Boley, C. D. ;
Khairallah, S. A. ;
Rubenchik, A. M. .
APPLIED OPTICS, 2015, 54 (09) :2477-2482
[7]   EFFECT OF CARBIDE AND NITRIDE ADDITIONS ON HETEROGENEOUS NUCLEATION BEHAVIOR OF LIQUID IRON [J].
BRAMFITT, BL .
METALLURGICAL TRANSACTIONS, 1970, 1 (07) :1987-&
[8]   Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J].
Chlebus, E. ;
Gruber, K. ;
Kuznicka, B. ;
Kurzac, J. ;
Kurzynowski, T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 639 :647-655
[9]   Infrared processed Cu composites reinforced with WC particles [J].
Deshpande, P. K. ;
Li, J. H. ;
Lin, R. Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 429 (1-2) :58-65
[10]   Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance [J].
Gu, Dongdong ;
Zhang, Hongmei ;
Dai, Donghua ;
Xia, Mujian ;
Hong, Chen ;
Poprawe, Reinhart .
COMPOSITES PART B-ENGINEERING, 2019, 163 :585-597