Classification with reject option for software defect prediction

被引:23
|
作者
Mesquita, Diego P. P. [1 ]
Rocha, Lincoln S. [1 ]
Gomes, Joao Paulo P. [1 ]
Rocha Neto, Ajalmar R. [2 ]
机构
[1] Univ Fed Ceara, Dept Comp Sci, Fortaleza, Ceara, Brazil
[2] Fed Inst Ceara, Dept Teleinformat, Fortaleza, Ceara, Brazil
关键词
Software defect prediction; Classification with reject option; Extreme learning machines; EXTREME LEARNING-MACHINE; METRICS;
D O I
10.1016/j.asoc.2016.06.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Context: Software defect prediction (SDP) is an important task in software engineering. Along with estimating the number of defects remaining in software systems and discovering defect associations, classifying the defect-proneness of software modules plays an important role in software defect prediction. Several machine-learning methods have been applied to handle the defect-proneness of software modules as a classification problem. This type of yes or no decision is an important drawback in the decision-making process and if not precise may lead to misclassifications. To the best of our knowledge, existing approaches rely on fully automated module classification and do not provide a way to incorporate extra knowledge during the classification process. This knowledge can be helpful in avoiding misclassifications in cases where system modules cannot be classified in a reliable way. Objective:We seek to develop a SDP method that (i) incorporates a reject option in the classifier to improve the reliability in the decision-making process; and (ii) makes it possible postpone the final decision related to rejected modules for an expert analysis or even for another classifier using extra domain knowledge. Method: We develop a SDP method called rejoELM and its variant, IrejoELM. Both methods were built upon the weighted extreme learning machine (ELM) with reject option that makes it possible postpone the final decision of non-classified modules, the rejected ones, to another moment. While rejoELM aims to maximize the accuracy for a rejection rate, IrejoELM maximizes the F-measure. Hence, IrejoELM becomes an alternative for classification with reject option for imbalanced datasets. Results: rejoEM and IrejoELM are tested on five datasets of source code metrics extracted from real world open-source software projects. Results indicate that rejoELM has an accuracy for several rejection rates that is comparable to some state-of-the-art classifiers with reject option. Although IrejoELM shows lower accuracies for several rejection rates, it clearly outperforms all other methods when the F-measure is used as a performance metric. Conclusion: It is concluded that rejoELM is a valid alternative for classification with reject option problems when classes are nearly equally represented. On the other hand, IrejoELM is shown to be the best alternative for classification with reject option on imbalanced datasets. Since SDP problems are usually characterized as imbalanced learning problems, the use of IrejoELM is recommended. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1085 / 1093
页数:9
相关论文
共 50 条
  • [21] Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization
    Zhang, Nana
    Zhu, Kun
    Ying, Shi
    Wang, Xu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 65 (01): : 279 - 308
  • [22] Software Defect Prediction with Bayesian Approaches
    Hernandez-Molinos, Maria Jose
    Sanchez-Garcia, Angel J.
    Barrientos-Martinez, Rocio Erandi
    Perez-Arriaga, Juan Carlos
    Ocharan-Hernandez, Jorge Octavio
    MATHEMATICS, 2023, 11 (11)
  • [23] Integrated Approach to Software Defect Prediction
    Felix, Ebubeogu Amarachukwu
    Lee, Sai Peck
    IEEE ACCESS, 2017, 5 : 21524 - 21547
  • [24] Software Defect Prediction via Transformer
    Zhang, Qihang
    Wu, Bin
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 874 - 879
  • [25] Survey of software defect prediction features
    Shaoming Qiu
    Bicong E
    Jingjie He
    Liangyu Liu
    Neural Computing and Applications, 2025, 37 (4) : 2113 - 2144
  • [26] A Systematic Review on Software Defect Prediction
    Singh, Pradeep Kumar
    Agarwal, Dishti
    Gupta, Aakriti
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 1793 - 1797
  • [27] Unsupervised methods for Software Defect Prediction
    Ha, Duy-An
    Chen, Ting-Hsuan
    Yuan, Shyan-Ming
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 49 - 55
  • [28] A Systematic Review of Ensemble Techniques for Software Defect and Change Prediction
    Khanna, Megha
    E-INFORMATICA SOFTWARE ENGINEERING JOURNAL, 2022, 16 (01) : 1 - 41
  • [29] On the Effectiveness of Cost Sensitive Neural Networks for Software Defect Prediction
    Muthukumaran, K.
    Dasgupta, Amrita
    Abhidnya, Shirode
    Neti, Lalita Bhanu Murthy
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 557 - 570
  • [30] Researcher Bias: The Use of Machine Learning in Software Defect Prediction
    Shepperd, Martin
    Bowes, David
    Hall, Tracy
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2014, 40 (06) : 603 - 616