On an algebra of linguistic truth-valued intuitionistic lattice-valued logic

被引:18
作者
Zou, Li [1 ]
Shi, Peng [2 ,3 ]
Pei, Zheng [4 ]
Xu, Yang [5 ]
机构
[1] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian, Peoples R China
[2] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Victoria Univ, Sch Engn & Sci, Melbourne, Vic 8001, Australia
[4] Xihua Univ, Sch Math & Comp Engn, Chengdu, Peoples R China
[5] Southwest Jiaotong Univ, Ctr Intelligent Control & Dev, Chengdu, Peoples R China
基金
中国博士后科学基金;
关键词
Lattice implication algebra; linguistic truth-valued intuitionistic fuzzy lattice; logic algebra; FUZZY-SET THEORY; TERMINOLOGICAL DIFFICULTIES; HEDGE ALGEBRAS; MODEL; REPRESENTATION; FUZZINESS; TERMS;
D O I
10.3233/IFS-2012-0565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a kind of linguistic truth-valued intuitionistic fuzzy lattice based on the point view of intuitionistic fuzzy set and linguistic truth-valued lattice implication algebra. As an algebra fundament of linguistic truth-valued intuitionistic fuzzy logic, some properties of linguistic truth-valued intuitionistic fuzzy algebra are discussed. The results show that linguistic truth-valued intuitionistic fuzzy lattice is a residual lattice, but it is not MTL-algebra, R-0-algebra, BL-algebra, MV-algebra and quasi lattice implication algebra.
引用
收藏
页码:447 / 456
页数:10
相关论文
共 35 条
[1]   Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade's paper "Terminological difficulties in fuzzy set theory - the case of "Intuitionistic fuzzy sets" [J].
Atanassov, K .
FUZZY SETS AND SYSTEMS, 2005, 156 (03) :496-499
[2]   On the representation of intuitionistic fuzzy t-norms and t-conorms [J].
Deschrijver, G ;
Cornelis, C ;
Kerre, EE .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (01) :45-61
[3]   On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision [J].
Deschrijver, Glad ;
Kerre, Etienne E. .
INFORMATION SCIENCES, 2007, 177 (08) :1860-1866
[4]   Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" [J].
Dubois, D ;
Gottwald, S ;
Hajek, P ;
Kacprzyk, J ;
Prade, H .
FUZZY SETS AND SYSTEMS, 2005, 156 (03) :485-491
[5]   Monoidal t-norm based logic: towards a logic for left-continuous t-norms [J].
Esteva, F ;
Godo, L .
FUZZY SETS AND SYSTEMS, 2001, 124 (03) :271-288
[6]  
Godel K., 1932, Anz. Akad. Wiss. Wien, V69, P65
[7]  
Hajek P., 1998, METAMATHEMATICS FUZZ
[8]   Computing with words in decision making: foundations, trends and prospects [J].
Herrera, F. ;
Alonso, S. ;
Chiclana, F. ;
Herrera-Viedma, E. .
FUZZY OPTIMIZATION AND DECISION MAKING, 2009, 8 (04) :337-364
[9]   The 2-tuple linguistic computational model. Advantages of its linguistic description, accuracy and consistency. [J].
Herrera, F ;
Martinez, L .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (SUPPL.) :33-48
[10]   A linguistic decision model for personnel management solved with a linguistic biobjective genetic algorithm [J].
Herrera, F ;
López, E ;
Mendaña, C ;
Rodríguez, MA .
FUZZY SETS AND SYSTEMS, 2001, 118 (01) :47-64