Intelligent mobile object monitoring by unmanned aerial vehicles

被引:3
作者
Knyaz, Vladimir [1 ]
Zheltov, Sergey [1 ]
Lebedev, Georgy [2 ]
Mikhailin, Denis [2 ]
Goncharenko, Vladimir [2 ]
机构
[1] Moscow Inst Phys & Technol, State Res Inst Aviat Syst, Machine Vis Dept, Moscow, Russia
[2] Moscow Inst Aviat Technol, Control Syst Dept, Moscow, Russia
来源
PROCEEDINGS OF 18TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES (IEEE EUROCON 2019) | 2019年
基金
俄罗斯基础研究基金会;
关键词
Mission planning; genetic algorithm; object recognition; convolutional neural network; unmanned aerial vehicle; fuzzy logic;
D O I
10.1109/EUROCON.2019.8861575
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The progress in technical characteristics of unmanned aerial vehicles (UAV) creates a background for their expanding use in applications where human capabilities are limited. Such applications as object monitoring in hard-to-get environment, extremal sport rally, rescue operation, require object surveillance in large regions and complex conditions. To provide high level of UAV autonomy three tasks should be solved: intelligent mission planning, object recognition and on the fly mission modifying according to changing conditions. The paper presents algorithms for these tasks based on artificial intelligence techniques.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
Ahmed A., 2008, International Archives of Photogrammetry, Remote Sensing and Spatial information Sciences, V37, P373
[2]  
[Anonymous], 2005, J MATH SCI, DOI DOI 10.1007/S10958-005-0281-1
[3]  
Chakrabarty A., 2017, AIAA INFORM SYSTEMS
[4]   3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction [J].
Choy, Christopher B. ;
Xu, Danfei ;
Gwak, Jun Young ;
Chen, Kevin ;
Savarese, Silvio .
COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 :628-644
[5]   The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking [J].
Du, Dawei ;
Qi, Yuankai ;
Yu, Hongyang ;
Yang, Yifan ;
Duan, Kaiwen ;
Li, Guorong ;
Zhang, Weigang ;
Huang, Qingming ;
Tian, Qi .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :375-391
[6]  
Goncharenko V. I., 2018, RUSS AERONAUTICS, V61, P271
[7]  
Herrmann C., 2016, ELECTROOPTICAL INFRA, V9987, P166
[8]  
Holland J.H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, P1
[9]   AN ALGORITHM FOR PEDESTRIAN DETECTION IN MULTISPECTRAL IMAGE SEQUENCES [J].
Kniaz, V. V. ;
Fedorenko, V. V. .
INTERNATIONAL WORKSHOP PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2017, 42-2 (W4) :73-77
[10]   ThermalGAN: Multimodal Color-to-Thermal Image Translation for Person Re-identification in Multispectral Dataset [J].
Kniaz, Vladimir V. ;
Knyaz, Vladimir A. ;
Hladuvka, Jiri ;
Kropatsch, Walter G. ;
Mizginov, Vladimir .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 :606-624