Bezier Function Smooth Support Vector Machine for Classification

被引:0
作者
Fan, X. H. [1 ]
Zhang, J. [1 ]
Ma, H. B. [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
来源
INTERNATIONAL CONFERENCE ON ADVANCED MANAGEMENT SCIENCE AND INFORMATION ENGINEERING (AMSIE 2015) | 2015年
关键词
pattern recognition; support vector machine; smooth method; Bezier function; classification;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a new smooth method that Bezier function is used to smoothen the model of support vector machine (SVM) is presented. A class of 1-norm Bezier function support vector machine (BSSVM1) is obtained. Newton-Armijo algorithm is applied to solve the BSSVM1 model. Moreover, our theoretical analysis and numerical experiments confirm that the BSSVM1 model have a better classification performance than other smooth models.
引用
收藏
页码:678 / 684
页数:7
相关论文
共 8 条
  • [1] [Anonymous], NATURE STATISTI810
  • [2] Hardy Godfrey Harold, 2009, COURSE PURE MATH
  • [3] SSVM: A smooth support vector machine for classification
    Lee, YJ
    Mangasarian, OL
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 20 (01) : 5 - 22
  • [4] Li Guang-ming, 2009, Journal of Computer Applications, V29, P1612, DOI 10.3724/SP.J.1087.2009.01612
  • [5] Musicant D. R., NDC: Normally distributed clustered datasets
  • [6] Yuan YB, 2005, LECT NOTES ARTIF INT, V3584, P157
  • [7] Yuan Yu-Bo, 2005, Chinese Journal of Computers, V28, P9
  • [8] Yuan YB, 2007, J IND MANAG OPTIM, V3, P529