A new equivariant cohomology ring

被引:1
作者
Chen, Bohui [1 ,2 ]
Du, Cheng-Yong [3 ]
Li, Tiyao [4 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Yangtz Ctr Math, Chengdu 610065, Peoples R China
[3] Sichuan Normal Univ, Sch Math, Chengdu 610068, Peoples R China
[4] Chongqing Normal Univ, Sch Math, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost complex manifold; Non-abelian Lie group; Lie group action; Equivariant cohomology; ORBIFOLD COHOMOLOGY; K-THEORY;
D O I
10.1007/s00209-019-02398-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, motivated by Chen-Ruan's stringy orbifold theory on almost complex orbifolds, we construct a new equivariant cohomology ring H-G* (X) for an equivariant almost complex pair (X, G), where X is a compact connected almost complex manifold, G is a connected compact Lie group which acts on X and preserves the almost complex structure.
引用
收藏
页码:1163 / 1182
页数:20
相关论文
共 31 条
[1]  
Adem A, 2012, CRM SER, V14, P1
[2]  
[Anonymous], 2007, Cambridge Tracts in Mathematics
[3]   STRINGY PRODUCT ON TWISTED ORBIFOLD K-THEORY FOR ABELIAN QUOTIENTS [J].
Becerra, Edward ;
Uribe, Bernardo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) :5781-5803
[4]  
Chen B., AUGMENTED SYMPLECTIC
[5]  
Chen B., 2014, ARXIV14056387
[6]  
Chen B., L2 SYMPLECTIC VOTICE
[7]   A deRham model for Chen-Ruan cohomology ring of Abelian orbifolds [J].
Chen, Bohui ;
Hu, Shengda .
MATHEMATISCHE ANNALEN, 2006, 336 (01) :51-71
[8]  
Chen W., 2002, CONT MATH, V310, P25
[9]   A new cohomology theory of orbifold [J].
Chen, WM ;
Ruan, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) :1-31
[10]  
Cieliebak K, 2000, INT MATH RES NOTICES, V2000, P831