Polaritons in van der Waals materials

被引:892
作者
Basov, D. N. [1 ,2 ]
Fogler, M. M. [1 ]
Garcia de Abajo, F. J. [3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA
[2] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[3] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[4] Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
关键词
HYPERBOLIC PHONON-POLARITONS; GRAPHENE PLASMONS; BORON-NITRIDE; T-C; LIGHT; ULTRAFAST; OPTICS; EDGE; SPECTROSCOPY; ENHANCEMENT;
D O I
10.1126/science.aag1992
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
van der Waals (vdW) materials consist of individual atomic planes bonded by weak vdW attraction. They display nearly all optical phenomena found in solids, including plasmonic oscillations of free electrons characteristic of metals, light emission/lasing and excitons encountered in semiconductors, and intense phonon resonances typical of insulators. These phenomena are embodied in confined light-matter hybrid modes termed polaritons-excitations of polarizable media, which are classified according to the origin of the polarization. The most studied varieties are plasmon, phonon, and exciton polaritons. In vdW materials, polaritons exhibit extraordinary properties that are directly affected by dimensionality and topology, as revealed by state-of-the-art imaging of polaritonic waves. vdW heterostructures provide unprecedented control over the polaritonic response, enabling new quantum phenomena and nanophotonics applications.
引用
收藏
页数:8
相关论文
共 117 条
[1]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[2]   Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids [J].
Atkin, Joanna M. ;
Berweger, Samuel ;
Jones, Andrew C. ;
Raschke, Markus B. .
ADVANCES IN PHYSICS, 2012, 61 (06) :745-842
[3]   Plasmon-Phonon Interactions in Topological Insulator Microrings [J].
Autore, Marta ;
D'Apuzzo, Fausto ;
Di Gaspare, Alessandra ;
Giliberti, Valeria ;
Limaj, Odeta ;
Roy, Pascale ;
Brahlek, Matthew ;
Koirala, Nikesh ;
Oh, Seongshik ;
Garcia de Abajo, Francisco Javier ;
Lupi, Stefano .
ADVANCED OPTICAL MATERIALS, 2015, 3 (09) :1257-1263
[4]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[5]   Electrodynamics of high-Tc superconductors [J].
Basov, DN ;
Timusk, T .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :721-779
[6]   Electroluminescence from graphene excited by electron tunneling [J].
Beams, Ryan ;
Bharadwaj, Palash ;
Novotny, Lukas .
NANOTECHNOLOGY, 2014, 25 (05)
[7]  
Bharadwaj P, 2015, OPT PHOTONICS NEWS, V26, P24, DOI 10.1364/OPN.26.7.000024
[8]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[9]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[10]   Strong exciton-plasmon coupling in semiconducting carbon nanotubes [J].
Bondarev, I. V. ;
Woods, L. M. ;
Tatur, K. .
PHYSICAL REVIEW B, 2009, 80 (08)