Finite p-groups with a minimal non-abelian subgroup of index p (I)

被引:14
|
作者
Qu, Haipeng [1 ]
Yang, Sushan [1 ]
Xu, Mingyao [1 ]
An, Lijian [1 ]
机构
[1] Shanxi Normal Univ, Dept Math, Linfen 041004, Shanxi, Peoples R China
关键词
Minimal non-abelian p-groups; Metabelian p-groups; Regular p-groups; p-Groups of maximal class;
D O I
10.1016/j.jalgebra.2012.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime p, we classify finite p-groups with a unique minimal non-abelian subgroup of index p. In fact, such groups have a maximal quotient which is a 3-group of maximal class. This paper is a part of classification of finite p-groups with a minimal non-abelian subgroup of index p, and partly solves a problem proposed by Berkovich. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 188
页数:11
相关论文
共 50 条
  • [41] Finite p-groups all of whose Ak-subgroups for a fixed k are metacyclic
    Berkovich, Yakov
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [42] p-Groups with few conjugacy classes of normalizers
    Brandl, Rolf
    Sica, Carmela
    Tota, Maria
    MONATSHEFTE FUR MATHEMATIK, 2013, 172 (02): : 151 - 159
  • [43] The Absolute Center of p-Groups of Maximal Class
    Orfi, R.
    Fouladi, S.
    FILOMAT, 2020, 34 (13) : 4483 - 4487
  • [44] A Characterization of Metacyclic p-Groups by Counting Subgroups
    Zhang, Qinhai
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 713 - 720
  • [45] Beauville p-groups of wild type and groups of maximal class
    Fernandez-Alcober, Gustavo A.
    Gavioli, Norberto
    Gul, Suekran
    Scoppola, Carlo M.
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (04): : 725 - 734
  • [46] Finite p-groups of exponent pe all of whose cyclic subgroups of order pe are normal
    Janko, Zvonimir
    JOURNAL OF ALGEBRA, 2014, 416 : 274 - 286
  • [47] A classification of some regular p-groups and its applications
    Zhang, QH
    Song, QW
    Xu, MY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (03): : 366 - 386
  • [48] A classification of some regular p-groups and its applications
    ZHANG Qinhai
    ScienceinChina(SeriesA:Mathematics), 2006, (03) : 366 - 386
  • [49] MINIMAL NONABELIAN AND MAXIMAL SUBGROUPS OF A FINITE p-GROUP
    Berkovich, Yakov
    GLASNIK MATEMATICKI, 2008, 43 (01) : 97 - 109
  • [50] MAXIMAL SUBSETS OF PAIRWISE NONCOMMUTING ELEMENTS OF SOME p-GROUPS OF MAXIMAL CLASS
    Fouladi, S.
    Orfi, R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) : 447 - 451