The effect on the Laplacian spectral radius of a graph by adding or grafting edges

被引:61
作者
Guo, JM [1 ]
机构
[1] Univ Petr, Dept Math, Shandong 257061, Dongying, Peoples R China
[2] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
关键词
Laplacian spectral radius; spectral radius; unit eigenvector; bipartite graph; tree;
D O I
10.1016/j.laa.2005.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates how the Laplacian spectral radius behaves when the graph is perturbed by adding or grafting edges. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 17 条
[1]  
[Anonymous], KRAGUJEVAC J MATH
[2]  
[Anonymous], LINEAR ALGEBRA APPL
[3]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[4]  
Bollob┬u├s B., 2013, MODERN GRAPH THEORY, V184
[5]  
CVETKOVIC DM, 1979, SPECTRA GRAHPS THEOR
[6]  
FIEDLER M, 1975, CZECH MATH J, V25, P619
[7]   GRAPH THEORY AND STATISTICS AND DYNAMICS OF POLYMER-CHAINS [J].
FORSMAN, WC .
JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (10) :4111-4115
[8]  
Godsil C., 2001, ALGEBRAIC GRAPH THEO
[9]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[10]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229