Quantum discord for two-qubit X states: Analytical formula with very small worst-case error

被引:119
作者
Huang, Yichen [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 01期
关键词
CONTINUOUS VARIABLE SYSTEMS; SEPARABILITY CRITERION; ENTANGLEMENT;
D O I
10.1103/PhysRevA.88.014302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum discord is a measure of quantum correlation beyond entanglement. Computing quantum discord for simple quantum states is a basic problem. An analytical formula of quantum discord for two-qubit X states is first claimed in [Ali, Rau, and Alber, Phys. Rev. A 81, 042105 (2010)], but later found to be not always correct. I observe numerically that the formula is valid with worst-case absolute error 0.0021. For symmetric two-qubit X states, I give a counterexample to the analytical formula derived in [F. F. Fanchini et al., Phys. Rev. A 81, 052107 (2010)], but observe that the formula is valid with worst-case absolute error 0.0006. The formula has been used in many research papers. The results in all these works are approximately correct, even if they may not be exactly correct.
引用
收藏
页数:3
相关论文
共 34 条
[1]   Quantum discord for two-qubit X states [J].
Ali, Mazhar ;
Rau, A. R. P. ;
Alber, G. .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]   Quantum correlations as precursors of entanglement [J].
Auyuanet, A. ;
Davidovich, L. .
PHYSICAL REVIEW A, 2010, 82 (03)
[3]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[4]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[5]   Sudden change in quantum and classical correlations and the Unruh effect [J].
Celeri, L. C. ;
Landulfo, A. G. S. ;
Serra, R. M. ;
Matsas, G. E. A. .
PHYSICAL REVIEW A, 2010, 81 (06)
[6]   Quantum discord of two-qubit X states [J].
Chen, Qing ;
Zhang, Chengjie ;
Yu, Sixia ;
Yi, X. X. ;
Oh, C. H. .
PHYSICAL REVIEW A, 2011, 84 (04)
[7]   Quantum discord in finite XY chains [J].
Ciliberti, L. ;
Rossignoli, R. ;
Canosa, N. .
PHYSICAL REVIEW A, 2010, 82 (04)
[8]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[9]   Quantum discord and quantum phase transition in spin chains [J].
Dillenschneider, Raoul .
PHYSICAL REVIEW B, 2008, 78 (22)
[10]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725