Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms

被引:9
作者
Liu, Chunlian [1 ]
Yang, Zuodong [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing 210097, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Coll Zhongbei, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Large solutions; Quasilinear elliptic equation; Asymptotic behavior;
D O I
10.1016/j.na.2007.10.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By a perturbation method and by constructing comparison functions, we show the exact asymptotic behaviour of solutions near the boundary of the quasilinear elliptic problem {div(vertical bar del u vertical bar(m-2)del u) +/- vertical bar del u(x)vertical bar q((m-1)) = b(x)e(u(x)), x is an element of Omega, u vertical bar(partial derivative Omega) = +infinity, where Omega is a C-2 bounded domain with a smooth boundary in R-N (N >= 2), m > 1, q >= 0, b is nonnegative and nontrivial in Omega, which may vanish on the boundary. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4380 / 4391
页数:12
相关论文
共 38 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]   Explosive nonnegative solutions to two point boundary value problems [J].
Anuradha, V ;
Brown, C ;
Shivaji, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (03) :613-630
[3]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[4]  
Bandle C., 1996, Adv. Differential Equations, V1, P133
[5]   An extreme variation phenomenon for some nonlinear elliptic problems with boundary blow-up [J].
Cîrstea, FC .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) :689-694
[6]   Extremal singular solutions for degenerate logistic-type equations in anisotropic media [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) :119-124
[7]   Uniqueness of the blow-up boundary solution of logistic equations with absorbtion [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) :447-452
[8]   Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type [J].
Cirstea, Florica-Corina ;
Radulescu, Vicentiu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) :3275-3286
[9]   Blow-up solutions for a class of semilinear elliptic and parabolic equations [J].
Du, YH ;
Huang, QG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :1-18
[10]  
Garcia-Melian J., 2003, ELECT J DIFFERENTIAL, P1