GENERALIZATIONS OF VERHEUL'S THEOREM TO ASYMMETRIC PAIRINGS

被引:0
作者
Karabina, Koray [1 ]
Knapp, Edward [2 ]
Menezes, Alfred [3 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Google Inc, Mountain View, CA 94043 USA
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
Verheul's theorem; asymmetric pairings; cryptography; discrete logarithm problem; LOGARITHMS; INVERSION; FORMULAS; CURVES;
D O I
10.3934/amc.2013.7.103
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For symmetric pairings e:GxG -> G(T), Verheul proved that the existence of an efficiently-computable isomorphism phi:G(T)-> G implies that the Diffie-Hellman problems in G and G(T) can be efficiently solved. In this paper, we explore the implications of the existence of efficiently-computable isomorphisms phi(1):G(T)-> G(1) and phi(2):G(T)-> G(2) for asymmetric pairings e:G(1)xG(2)-> G(T). We also give a simplified proof of Verheul's theorem.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2005, PAIRINGS
[2]  
Aranha DF, 2011, LECT NOTES COMPUT SC, V6632, P48, DOI 10.1007/978-3-642-20465-4_5
[3]  
Barreto PSLM, 2006, LECT NOTES COMPUT SC, V3897, P319
[4]   Short signatures from the Weil pairing [J].
Boneh, D ;
Lynn, B ;
Shacham, H .
JOURNAL OF CRYPTOLOGY, 2004, 17 (04) :297-319
[5]  
Brown Daniel R. L., STATIC DIFFIE HELLMA
[6]  
Cheon JH, 2006, LECT NOTES COMPUT SC, V4004, P1
[7]   FAST EVALUATION OF LOGARITHMS IN FIELDS OF CHARACTERISTIC 2 [J].
COPPERSMITH, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (04) :587-594
[8]   A SUBEXPONENTIAL-TIME ALGORITHM FOR COMPUTING DISCRETE LOGARITHMS OVER GF(P2) [J].
ELGAMAL, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (04) :473-481
[9]   A REMARK CONCERNING M-DIVISIBILITY AND THE DISCRETE LOGARITHM IN THE DIVISOR CLASS GROUP OF CURVES [J].
FREY, G ;
RUCK, HG .
MATHEMATICS OF COMPUTATION, 1994, 62 (206) :865-874
[10]   Aspects of Pairing Inversion [J].
Galbraith, S. ;
Hess, F. ;
Vercauteren, F. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) :5719-5728