On the subset sum problem over finite fields

被引:71
作者
Li, Jiyou [1 ]
Wan, Daqing [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
中国国家自然科学基金;
关键词
Subset sum problem; Finite fields; Decoding problem; Reed-Solomon codes; Deep holes;
D O I
10.1016/j.ffa.2008.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subset sum problem over finite fields is a well-known NP-complete problem. It arises naturally from decoding generalized Reed-Solomon codes. In this paper, we study the number of solutions of the subset sum problem from a mathematical point of view. In several interesting cases, we obtain explicit or asymptotic formulas for the solution number. As a consequence, we obtain some results on the decoding problem of Reed-Solomon codes. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:911 / 929
页数:19
相关论文
共 8 条
[1]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[2]  
Cheng Q, 2007, LECT NOTES COMPUT SC, V4484, P296
[3]   On the list and bounded distance decodability of Reed-Solomon codes [J].
Cheng, Qi ;
Wan, Daqing .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :195-209
[4]   CYCLIC SPACES FOR GRASSMANN DERIVATIVES AND ADDITIVE THEORY [J].
DASILVA, JAD ;
HAMIDOUNE, YO .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :140-146
[5]  
Erdo P., 1980, Monographs of L'Enseignement Mathematique, V28
[6]   THE REPRESENTATION OF SOME INTEGERS AS A SUBSET SUM [J].
HAMIDOUNE, YO .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :557-563
[7]  
LI YJ, SCI SINIC A IN PRESS
[8]  
Petkovsek M., 1996, A = B