Weighted preferences in evolutionary multi-objective optimization

被引:17
作者
Friedrich, Tobias [1 ]
Kroeger, Trent [2 ]
Neumann, Frank [2 ]
机构
[1] Max Planck Inst Informat, Bremen, Germany
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia
关键词
Evolutionary algorithms; Multi-objective optimization; User preferences; ALGORITHM; DESIGN;
D O I
10.1007/s13042-012-0083-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms have been widely used to tackle multi-objective optimization problems. Incorporating preference information into the search of evolutionary algorithms for multi-objective optimization is of great importance as it allows one to focus on interesting regions in the objective space. Zitzler et al. have shown how to use a weight distribution function on the objective space to incorporate preference information into hypervolume-based algorithms. We show that this weighted information can easily be used in other popular EMO algorithms as well. Our results for NSGA-II and SPEA2 show that this yields similar results to the hypervolume approach and requires less computational effort.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 20 条
  • [1] Allmendinger R, 2008, LECT NOTES COMPUT SC, V5361, P200
  • [2] [Anonymous], 2002, Evolutionary algorithms for solving multi-objective problems
  • [3] Auger A., 2009, Genetic and Evolutionary Computation Conference (GECCO 2009), P555
  • [4] SMS-EMOA: Multiobjective selection based on dominated hypervolume
    Beume, Nicola
    Naujoks, Boris
    Emmerich, Michael
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1653 - 1669
  • [5] Approximating the volume of unions and intersections of high-dimensional geometric objects
    Bringmann, Karl
    Friedrich, Tobias
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2010, 43 (6-7): : 601 - 610
  • [6] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [7] Deb K., 2010, MULTIOBJECTIVE OPTIM
  • [8] Deb K, 2006, GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, P635
  • [9] Friedrich T, 2011, LECT NOTES ARTIF INT, V7106, P291, DOI 10.1007/978-3-642-25832-9_30
  • [10] Incorporating a priori preferences in a vector PSO algorithm to find arbitrary fractions of the pareto front of multiobjective design problems
    Ho, S. L.
    Yang, Shiyou
    Ni, Guangzheng
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1038 - 1041