Improved quantum computing with higher-order Trotter decomposition

被引:8
作者
Yang, Xiaodong [1 ,2 ,3 ]
Nie, Xinfang [2 ,3 ,4 ]
Ji, Yunlan [5 ]
Xin, Tao [1 ,2 ,3 ]
Lu, Dawei [1 ,2 ,3 ,4 ]
Li, Jun [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Int Quantum Acad, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[5] Hefei Univ Technol, Sch Elect Sci & Appl Phys, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
EXPONENTIAL OPERATORS; MATRIX; DYNAMICS;
D O I
10.1103/PhysRevA.106.042401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In designing quantum control, it is generally required to simulate the controlled system evolution with a classical computer. However, computing the time evolution operator can be quite resource consuming since the total Hamiltonian is often hard to diagonalize. In this paper, we mitigate this issue by substituting the time evolution segments with their Trotter decompositions, which reduces the propagator into a combination of single-qubit operations and fixed-time system evolutions. The resulting procedure can provide substantial speed gain with acceptable costs in the propagator error. As a demonstration, we apply the proposed strategy to improve the efficiency of the gradient ascent pulse engineering algorithm for searching optimal control fields. Furthermore, we show that the higher-order Trotter decompositions can provide efficient Ansatze for the variational quantum algorithm, leading to improved performance in solving the ground-state problem. The strategy presented here is also applicable for many other quantum optimization and simulation tasks.
引用
收藏
页数:9
相关论文
共 66 条
[1]  
[Anonymous], 2010, Ph.D. thesis
[2]   Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems [J].
Banuls, M. C. ;
Cirac, J. I. ;
Hastings, M. B. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[3]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[4]   Practical pulse engineering: Gradient ascent without matrix exponentiation [J].
Bhole, Gaurav ;
Jones, Jonathan A. .
FRONTIERS OF PHYSICS, 2018, 13 (03)
[5]   Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control [J].
Boscain, U. ;
Sigalotti, M. ;
Sugny, D. .
PRX QUANTUM, 2021, 2 (03)
[6]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[7]   Roads towards fault-tolerant universal quantum computation [J].
Campbell, Earl T. ;
Terhal, Barbara M. ;
Vuillot, Christophe .
NATURE, 2017, 549 (7671) :172-179
[8]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[9]   Theory of Trotter Error with Commutator Scaling [J].
Childs, Andrew M. ;
Su, Yuan ;
Tran, Minh C. ;
Wiebe, Nathan ;
Zhu, Shuchen .
PHYSICAL REVIEW X, 2021, 11 (01)
[10]   Quantum-optimal-control-inspired ansatz for variational quantum algorithms [J].
Choquette, Alexandre ;
Di Paolo, Agustin ;
Barkoutsos, Panagiotis Kl ;
Senechal, David ;
Tavernelli, Ivano ;
Blais, Alexandre .
PHYSICAL REVIEW RESEARCH, 2021, 3 (02)