Using artificial neural network for predicting performance of the Ranque-Hilsch vortex tube

被引:37
作者
Korkmaz, Murat Eray [1 ]
Gumusel, Levent [1 ]
Markal, Burak [1 ]
机构
[1] Karadeniz Tech Univ, Dept Mech Engn, Fac Engn, TR-61080 Trabzon, Turkey
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2012年 / 35卷 / 06期
关键词
Vortex tube; Neural network; Performance; Modeling; HEAT-EXCHANGERS; FLOW; AIR; DIAMETER; MODEL;
D O I
10.1016/j.ijrefrig.2012.04.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, effects of conical valve angle and length to diameter ratio on the performance of a counter flow Ranque-Hilsch vortex tube are predicted with artificial neural networks (ANNs) by using experimental data. In the model, inlet pressure (P-i), conical valve angle (phi), length to diameter ratio (LID) and cold mass fraction (y(c)) are used as input parameters while total temperature difference (Delta T) is chosen as the output parameter. The multilayer feed forward model and the Levenberg Marquardt learning algorithm are used in the network and the hyperbolic tangent function is chosen as a transfer function. The artificial neural network is designed via the NeuroSolutions 6.0 software. Finally, it's disclosed that ANN can be successfully used to predict effects of geometrical parameters on the performance of the Ranque-Hilsch vortex tube with a good accuracy. (C) 2012 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:1690 / 1696
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2019, NEURAL NETWORK DESIG
[2]   An experimental study on the design parameters of a counterflow vortex tube [J].
Aydin, Orhan ;
Baki, Muzaffer .
ENERGY, 2006, 31 (14) :2763-2772
[3]   A new vortex generator geometry for a counter-flow Ranque-Hilsch vortex tube [J].
Aydin, Orhan ;
Markal, Burak ;
Avci, Mete .
APPLIED THERMAL ENGINEERING, 2010, 30 (16) :2505-2511
[4]   Experimental investigation of vortex tube refrigerator with a divergent hot tube [J].
Chang, Kun ;
Li, Qing ;
Zhou, Gang ;
Li, Qiang .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (01) :322-327
[5]   Dynamic prediction and control of heat exchangers using artificial neural networks [J].
Díaz, G ;
Sen, M ;
Yang, KT ;
McClain, RL .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (09) :1671-1679
[6]   Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow Ranque-Hilsch vortex tubes using artificial neural networks [J].
Dincer, K. ;
Tasdemir, S. ;
Baskaya, S. ;
Uysal, B. Z. .
APPLIED THERMAL ENGINEERING, 2008, 28 (17-18) :2380-2390
[7]   Experimental investigation of performance of hot cascade type Ranque-Hilsch vortex tube and exergy analysis [J].
Dincer, K. ;
Yilmaz, Y. ;
Berber, A. ;
Baskaya, S. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (04) :1117-1124
[8]   Review of Ranque-Hilsch effects in vortex tubes [J].
Eiamsa-ard, Smith ;
Promvonge, Ponglet .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (07) :1822-1842
[9]   Artificial neural network analysis of an automobile air conditioning system [J].
Hosoz, M ;
Ertunc, HM .
ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (11-12) :1574-1587
[10]   A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger - use of an artificial neural network model [J].
Islamoglu, Y .
APPLIED THERMAL ENGINEERING, 2003, 23 (02) :243-249