Bifurcation indicator for geometrically nonlinear elasticity using the Method of Fundamental Solutions

被引:12
作者
Askour, Omar [1 ]
Tri, Abdeljalil [2 ,3 ]
Braikat, Bouazza [1 ]
Zahrouni, Hamid [4 ,5 ]
Potier-Ferry, Michel [4 ,5 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben Msik, Lab Ingn & Mat LIMAT, BP 7955, Casablanca, Morocco
[2] ISEM, Km 7,Route El Jadida, Casablanca, Morocco
[3] Hassan II Univ Casablanca, Fac Sci Ain Chok, Lab Mecan, Casablanca, Morocco
[4] Univ Lorraine, CNRS, Arts & Metiers ParisTech, LEM3, F-57000 Metz, France
[5] Univ Lorraine, Lab Excellence Design Alloy Met Low mAss Struct, DAMAS, F-57000 Metz, France
来源
COMPTES RENDUS MECANIQUE | 2019年 / 347卷 / 02期
关键词
Bifurcation indicator; Method of Fundamental Solutions; Asymptotic Numerical Method; Nonlinear computation; MESHLESS; ALGORITHM; PLATE;
D O I
10.1016/j.crme.2019.01.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present work, we propose a numerical analysis of instability and bifurcations for geometrically nonlinear elasticity problems. These latter are solved by using the Asymptotic Numerical Method (ANM) associated with the Method of Fundamental Solutions (MFS). To compute bifurcation points and to determine the critical loads, we propose three techniques. The first one is based on a geometrical indicator obtained by analyzing the Taylor series. The second one exploits the properties of the Pade approximants, and the last technique uses an analytical bifurcation indicator. Numerical examples are studied to show the efficiency and the reliability of the proposed algorithms. (C) 2019 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 16 条
[1]   RBF meshless method for large deflection of thin plates with immovable edges [J].
Al-Gahtani, Husain J. ;
Naffa'a, Mahmoud .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (02) :176-183
[2]   Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems [J].
Askour, Omar ;
Tri, Abdeljalil ;
Braikat, Bouazza ;
Zahrouni, Hamid ;
Potier-Ferry, Michel .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 89 :25-35
[3]   An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems [J].
Balakrishnan, K ;
Sureshkumar, R ;
Ramachandran, PA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :289-304
[4]   Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems [J].
Balakrishnan, K ;
Ramachandran, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) :1-18
[5]  
Bridges TR, 1996, COMMUN NUMER METH EN, V12, P209
[6]   A PATH-FOLLOWING TECHNIQUE VIA AN ASYMPTOTIC-NUMERICAL METHOD [J].
COCHELIN, B .
COMPUTERS & STRUCTURES, 1994, 53 (05) :1181-1192
[7]  
Cochelin B., 2007, METHODE ASYMPTOTIQUE
[8]   A numerical continuation method based on Pade approximants [J].
Elhage-Hussein, A ;
Potier-Ferry, M ;
Damil, N .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (46-47) :6981-7001
[9]   A STUDY OF ELASTIC-PLASTIC DEFORMATION IN THE PLATE WITH THE INCREMENTAL THEORY AND THE MESHLESS METHODS [J].
Jankowska, Malgorzata A. ;
Kolodziej, Jan Adam .
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2016, 11 (01) :41-60
[10]   The method of fundamental solutions for an inverse boundary value problem in static thermo-elasticity [J].
Karageorghis, A. ;
Lesnic, D. ;
Marin, L. .
COMPUTERS & STRUCTURES, 2014, 135 :32-39