Quantum transfer-matrices for the sausage model

被引:20
作者
Bazhanov, Vladimir V. [1 ]
Kotousov, Gleb A. [1 ,2 ]
Lukyanov, Sergei L. [2 ,3 ]
机构
[1] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys & Engn, Canberra, ACT 2601, Australia
[2] Rutgers State Univ, NHETC, Dept Phys & Astron, Piscataway, NJ 08855 USA
[3] LD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
关键词
Field Theories in Lower Dimensions; Integrable Field Theories; Lattice Integrable Models; Sigma Models; THERMODYNAMIC BETHE-ANSATZ; CONFORMAL FIELD-THEORY; HIDDEN GRASSMANN STRUCTURE; INTEGRABLE STRUCTURE; SIGMA-MODELS; ODE/IM CORRESPONDENCE; VOLUME DEPENDENCE; GOLDSTONE BOSONS; ENERGY-SPECTRUM; GROUND-STATE;
D O I
10.1007/JHEP01(2018)021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work we revisit the problem of the quantization of the two-dimensional O (3) non-linear sigma model and its one-parameter integrable deformation - the sausage model. Our consideration is based on the so-called ODE/IQFT correspondence, a variant of the Quantum Inverse Scattering Method. The approach allowed us to explore the integrable structures underlying the quantum O (3)/sausage model. Among the obtained results is a system of non-linear integral equations for the computation of the vacuum eigenvalues of the quantum transfer-matrices.
引用
收藏
页数:89
相关论文
共 118 条
[1]   Bethe ansatz equations for the classical An(1) affine Toda field theories [J].
Adamopoulou, Panagiota ;
Dunning, Clare .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (20)
[2]  
Ahn C., ARXIV170108933
[3]   BETHE-ANSATZ TYPE EQUATIONS FOR THE FATEEV-ZAMOLODCHIKOV SPIN MODEL [J].
ALBERTINI, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07) :1799-1813
[4]  
ALFIMOV MN, 2015, JHEP, V2
[5]  
[Anonymous], 2007, Dover books on physics
[6]  
[Anonymous], 1985, SOV PHYS JETP
[7]   Suzuki equations and integrals of motion for supersymmetric CFT [J].
Babenko, C. ;
Smirnov, F. .
NUCLEAR PHYSICS B, 2017, 924 :406-416
[8]   BEYOND THE LARGE N LIMIT - NONLINEAR W-INFINITY AS SYMMETRY OF THE SL(2,R)/U(1) COSET MODEL [J].
BAKAS, I ;
KIRITSIS, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 :55-81
[9]   TBA equations for excited states in the O(3) and O(4) nonlinear σ-model [J].
Balog, J ;
Hegedüs, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1881-1901
[10]   The finite size spectrum of the 2-dimensional O(3) nonlinear σ-model [J].
Balog, Janos ;
Hegedus, Arpad .
NUCLEAR PHYSICS B, 2010, 829 (03) :425-446