Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants

被引:117
作者
Pena, Maria J. [1 ]
Darvill, Alan G. [1 ,2 ]
Eberhard, Stefan [1 ]
York, William S. [1 ,2 ]
O'Neill, Malcolm A. [1 ]
机构
[1] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
[2] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
关键词
evolution; land plants; plant cell wall; xyloglucan;
D O I
10.1093/glycob/cwn078
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xyloglucan is a well-characterized hemicellulosic polysaccharide that is present in the cell walls of all seed-bearing plants. The cell walls of avascular and seedless vascular plants are also believed to contain xyloglucan. However, these xyloglucans have not been structurally characterized. This lack of information is an impediment to understanding changes in xyloglucan structure that occurred during land plant evolution. In this study, xyloglucans were isolated from the walls of avascular (liverworts, mosses, and hornworts) and seedless vascular plants (club and spike mosses and ferns and fern allies). Each xyloglucan was fragmented with a xyloglucan-specific endo-glucanase and the resulting oligosaccharides then structurally characterized using NMR spectroscopy, MALDI-TOF and electrospray mass spectrometry, and glycosyl-linkage and glycosyl residue composition analyses. Our data show that xyloglucan is present in the cell walls of all major divisions of land plants and that these xyloglucans have several common structural motifs. However, these polysaccharides are not identical because specific plant groups synthesize xyloglucans with unique structural motifs. For example, the moss Physcomitrella patens and the liverwort Marchantia polymorpha synthesize XXGGG- and XXGG-type xyloglucans, respectively, with sidechains that contain a beta-D-galactosyluronic acid and a branched xylosyl residue. By contrast, hornworts synthesize XXXG-type xyloglucans that are structurally homologous to the xyloglucans synthesized by many seed-bearing and seedless vascular plants. Our results increase our understanding of the evolution, diversity, and function of structural motifs in land-plant xyloglucans and provide support to the proposal that hornworts are sisters to the vascular plants.
引用
收藏
页码:891 / 904
页数:14
相关论文
共 66 条
[1]   Arabidopsis gene knockout:: phenotypes wanted [J].
Bouché, N ;
Bouchez, D .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (02) :111-117
[2]   Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants [J].
Carafa, A ;
Duckett, JG ;
Knox, JP ;
Ligrone, R .
NEW PHYTOLOGIST, 2005, 168 (01) :231-240
[3]  
Carpita N. C., 1989, ANAL CARBOHYDRATES G, P157
[4]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[5]  
Carpita NC, 1996, PROGR GLYCOBIOLOGY, P595
[6]   Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component [J].
Cavalier, David M. ;
Lerouxel, Olivier ;
Neumetzler, Lutz ;
Yamauchi, Kazuchika ;
Reinecke, Antje ;
Freshour, Glenn ;
Zabotina, Olga A. ;
Hahn, Michael G. ;
Burgert, Ingo ;
Pauly, Markus ;
Raikhel, Natasha V. ;
Keegstra, Kenneth .
PLANT CELL, 2008, 20 (06) :1519-1537
[7]   Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose [J].
Cavalier, David M. ;
Keegstra, Kenneth .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (45) :34197-34207
[8]   Elimination of oxidative degradation during the per-O-methylation of carbohydrates [J].
Ciucanu, I ;
Costello, CE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (52) :16213-16219
[9]   A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase [J].
Cocuron, Jean-Christophe ;
Lerouxel, Olivier ;
Drakakaki, Georgia ;
Alonso, Ana P. ;
Liepman, Aaron H. ;
Keegstra, Kenneth ;
Raikhel, Natasha ;
Wilkerson, Curtis G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (20) :8550-8555
[10]  
Duff RJ, 2007, BRYOLOGIST, V110, P214, DOI 10.1639/0007-2745(2007)110[214:PACTDA]2.0.CO