Spectral properties of a class of random walks on locally finite groups

被引:4
作者
Bendikov, Alexander [1 ]
Bobikau, Barbara [1 ]
Pittet, Christophe [2 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[2] Aix Marseille Univ, I2M, F-13453 Marseille 13, France
关键词
Random walk; locally finite group; ultra-metric space; infinite divisible distribution; Laplace transform; Kohlbecker transform; Legendre transform; return probability; spectral distribution; isospectral profile; ULTRACONTRACTIVITY; TRANSIENCE; RECURRENCE; PROFILE;
D O I
10.4171/GGD/206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some spectral properties of random walks on infinite countable amenable groups with an emphasis on locally finite groups, e. g. the infinite symmetric group S-infinity. On locally finite groups, the random walks under consideration are driven by infinite divisible distributions. This allows us to embed our random walks into continuous time Levy processes. We obtain examples of fast/slow decays of return probabilities, a recurrence criterion, exact values and estimates of isospectral profiles and spectral distributions.
引用
收藏
页码:791 / 820
页数:30
相关论文
共 36 条
[11]   A geometric approach to on-diagonal heat kernel lower bounds on groups [J].
Coulhon, T ;
Grigor'yan, A ;
Pittet, C .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (06) :1763-+
[12]   Ultracontractivity and Nash type inequalities [J].
Coulhon, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (02) :510-539
[13]   ON RECURRENCE OF A CERTAIN CHAIN [J].
DARLING, DA ;
ERDOS, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (02) :336-&
[15]  
DUDLEY RM, 1962, P AM MATH SOC, V13, P447, DOI [10.2307/2034956, DOI 10.2307/2034956]
[16]   Isoperimetry for wreath products of Markov chains and multiplicity of selfintersections of random walks [J].
Erschler, Anna .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (04) :560-586
[17]  
Feller W., 1971, INTRO PROBABILITY TH
[18]  
FLATTO L, 1974, ILLINOIS J MATH, V18, P1
[19]  
Grigor'yan A., 1994, REV MAT IBEROAM, V10, P395
[20]   THE HEAT-EQUATION ON NONCOMPACT RIEMANNIAN-MANIFOLDS [J].
GRIGORYAN, AA .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (01) :47-77