Three-dimensional corner eddies in Stokes flow

被引:1
|
作者
Davis, Anthony M. J. [1 ]
Smith, Stefan G. Llewellyn [1 ]
机构
[1] Univ Calif San Diego, Jacobs Sch Engn, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
SEPARATION; CAVITY; FLUID; PLANE;
D O I
10.1088/0169-5983/46/1/015509
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Vortices exist in wedge-shaped corners in Stokes flow. In seeking an analogous eigensolution structure in three dimensions, an analytic construction is derived for a rectangular corner. This restriction mirrors the only corner type for which computed streamlines are available for comparison and explanation. The dominant eigenvalue is complex, giving rise to localized eddies. Hence trapped fluid is predicted near the corner.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Detection of three-dimensional structures of oceanic eddies using artificial intelligence
    Xu, Guangjun
    Xie, Wenhong
    Lin, Xiayan
    Liu, Yu
    Hang, Renlong
    Sun, Wenjin
    Liu, Dazhao
    Dong, Changming
    OCEAN MODELLING, 2024, 190
  • [42] Ocean Eddies in the Drake Passage: Decoding Their Three-Dimensional Structure and Evolution
    Lin, Xiayan
    Zhao, Hui
    Liu, Yu
    Han, Guoqing
    Zhang, Han
    Liao, Xiaomei
    REMOTE SENSING, 2023, 15 (09)
  • [43] SEQUENCES OF EDDIES IN OSCILLATORY STOKES-FLOW
    CARBONARO, P
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1985, 4 (04): : 425 - 432
  • [44] SEQUENCES OF EDDIES IN OSCILLATORY STOKES FLOW.
    Carbonaro, P.
    1600, (04):
  • [45] ATTACHED AND FREE EDDIES IN STOKES-FLOW
    SMITH, SH
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1979, 5 (05) : 387 - 393
  • [46] EXISTENCE OF FREE EDDIES IN A STREAMING STOKES FLOW
    DORREPAAL, JM
    ONEILL, ME
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1979, 32 (MAY): : 95 - 107
  • [47] A mixed convergent formulation for the three-dimensional Stokes equations
    M. Amara
    H. Barucq
    M. Duloué
    CALCOLO, 2004, 41 : 37 - 64
  • [48] Three-dimensional finite element methods for the Stokes problem
    Boffi, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) : 664 - 670
  • [49] The production of uncertainty in three-dimensional Navier–Stokes turbulence
    Ge J.
    Rolland J.
    Vassilicos J.C.
    Journal of Fluid Mechanics, 2023, 977
  • [50] Attractors for three-dimensional Navier-Stokes equations
    Capinski, M
    Cutland, NJ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2413 - 2426