Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties

被引:14
作者
Kim, Cham [1 ]
Yang, Yeokyung [1 ]
Lopez, David Humberto [2 ]
Ha, Dongwoo [3 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, 333 Techno Jungang Daero, Daegu 42988, South Korea
[2] Univ Arizona, Dept Chem & Environm Engn, 1133 E James E Rogers Way, Tucson, AZ 85721 USA
[3] Korea Electrotechnol Res Inst KERI, 12 Bulmosan Ro 1Obeon Gil, Chang Won 51543, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CATHODE MATERIALS; THICK ELECTRODES; PERFORMANCE; INTERCALATION; DIFFUSION; ENERGY; ANODE;
D O I
10.1063/5.0016456
中图分类号
O59 [应用物理学];
学科分类号
摘要
We studied technology that enables the crystal alignment of LiNi0.5Mn0.3Co0.2O2 using its magnetic properties. LiNi0.5Mn0.3Co0.2O2 exhibited either antiferromagnetic or paramagnetic behavior depending on temperature as well as magnetic anisotropy originated from its crystallographic anisotropy. Based on these magnetic characteristics, we adjusted the vector quantity of an external magnetic field and applied it to LiNi0.5Mn0.3Co0.2O2 crystals, thus producing crystal-aligned LiNi0.5Mn0.3Co0.2O2 electrodes. In these electrodes, the (001) plane was oriented comparatively perpendicular to the surface of a current collector. Due to the intrinsic lithium ion transport kinetics in LiNi0.5Mn0.3Co0.2O2 along the (001) plane, aligned LiNi0.5Mn0.3Co0.2O2 may contribute to enhancing lithium ion conduction during the charge/discharge process in a lithium ion battery, resulting in improved electrochemical performance. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 60 条
[11]  
Colfen H., 2008, MESOCRYSTALS NONCLAS
[12]   Li-ion batteries: basics, progress, and challenges [J].
Deng, Da .
ENERGY SCIENCE & ENGINEERING, 2015, 3 (05) :385-418
[13]  
Duan F., 2005, Introduction to Condensed Matter Physics
[14]   Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system [J].
Ergang, Nicholas S. ;
Lytle, Justin C. ;
Lee, Kyu T. ;
Oh, Seung M. ;
Smyrl, William H. ;
Stein, Andreas .
ADVANCED MATERIALS, 2006, 18 (13) :1750-+
[15]  
Goldman A., 2006, MODERN FERRITE TECHN
[16]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[17]   Anionic redox processes for electrochemical devices [J].
Grimaud, A. ;
Hong, W. T. ;
Shao-Horn, Y. ;
Tarascon, J. -M. .
NATURE MATERIALS, 2016, 15 (02) :121-126
[18]   Introduction to Electrochemical Impedance Spectroscopy as a Measurement Method for the Wetting Degree of Lithium-Ion Cells [J].
Guenter, Florian J. ;
Habedank, Jan Bernd ;
Schreiner, David ;
Neuwirth, Tobias ;
Gilles, Ralph ;
Reinhart, Gunther .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (14) :A3249-A3256
[19]   An Advanced Lithium Ion Battery Based on High Performance Electrode Materials [J].
Hassoun, Jusef ;
Lee, Ki-Soo ;
Sun, Yang-Kook ;
Scrosati, Bruno .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (09) :3139-3143
[20]   High Voltage LiNi0.5Mn0.3Co0.2O2/Graphite Cell Cycled at 4.6 V with a FEC/HFDEC-Based Electrolyte [J].
He, Meinan ;
Su, Chi-Cheung ;
Feng, Zhenxing ;
Zeng, Li ;
Wu, Tianpin ;
Bedzyk, Michael J. ;
Fenter, Paul ;
Wang, Yan ;
Zhang, Zhengcheng .
ADVANCED ENERGY MATERIALS, 2017, 7 (15)