Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties

被引:14
作者
Kim, Cham [1 ]
Yang, Yeokyung [1 ]
Lopez, David Humberto [2 ]
Ha, Dongwoo [3 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, 333 Techno Jungang Daero, Daegu 42988, South Korea
[2] Univ Arizona, Dept Chem & Environm Engn, 1133 E James E Rogers Way, Tucson, AZ 85721 USA
[3] Korea Electrotechnol Res Inst KERI, 12 Bulmosan Ro 1Obeon Gil, Chang Won 51543, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CATHODE MATERIALS; THICK ELECTRODES; PERFORMANCE; INTERCALATION; DIFFUSION; ENERGY; ANODE;
D O I
10.1063/5.0016456
中图分类号
O59 [应用物理学];
学科分类号
摘要
We studied technology that enables the crystal alignment of LiNi0.5Mn0.3Co0.2O2 using its magnetic properties. LiNi0.5Mn0.3Co0.2O2 exhibited either antiferromagnetic or paramagnetic behavior depending on temperature as well as magnetic anisotropy originated from its crystallographic anisotropy. Based on these magnetic characteristics, we adjusted the vector quantity of an external magnetic field and applied it to LiNi0.5Mn0.3Co0.2O2 crystals, thus producing crystal-aligned LiNi0.5Mn0.3Co0.2O2 electrodes. In these electrodes, the (001) plane was oriented comparatively perpendicular to the surface of a current collector. Due to the intrinsic lithium ion transport kinetics in LiNi0.5Mn0.3Co0.2O2 along the (001) plane, aligned LiNi0.5Mn0.3Co0.2O2 may contribute to enhancing lithium ion conduction during the charge/discharge process in a lithium ion battery, resulting in improved electrochemical performance. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 60 条
[1]   Recommendations on the proper use of SGLT2 inhibitors [J].
Abiru, Norio ;
Ikegami, Hiroshi ;
Inagaki, Nobuya ;
Ueki, Kohjiro ;
Kaku, Kohei ;
Kadowaki, Takashi ;
Sato, Shin-ichi ;
Seino, Yutaka ;
Haneda, Masakazu .
DIABETOLOGY INTERNATIONAL, 2020, 11 (01) :1-5
[2]   Formation of c-axis aligned polycrystal hydroxyapatite using high magnetic field with mechanical sample rotation [J].
Akiyama, J ;
Hashimoto, M ;
Takadama, H ;
Nagata, F ;
Yokogawa, Y ;
Sassa, K ;
Iwai, K ;
Asai, S .
MATERIALS TRANSACTIONS, 2005, 46 (02) :203-206
[3]   GENERALIZED CURIE-WEISS LAW [J].
ARROTT, AS .
PHYSICAL REVIEW B, 1985, 31 (05) :2851-2856
[4]  
Asai S., 2012, Electromagnetic Processing of Materials
[5]   Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance [J].
Bae, Chang-Jun ;
Erdonmez, Can K. ;
Halloran, John W. ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1254-1258
[6]   Study of Immersion of LiNi0.5Mn0.3Co0.2O2 Material in Water for Aqueous Processing of Positive Electrode for Li-Ion Batteries [J].
Bichon, Marie ;
Sotta, Dane ;
Dupre, Nicolas ;
De Vito, Eric ;
Boulineau, Adrien ;
Porcher, Willy ;
Lestriez, Bernard .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) :18331-18341
[7]  
Billaud J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.97, 10.1038/NENERGY.2016.97]
[8]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[9]   Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries:: Understanding local structure via magnetic properties [J].
Chemova, Natasha A. ;
Ma, Miaorniao ;
Xiao, Jie ;
Whittingham, M. Stanley ;
Breger, Julien ;
Grey, Clare P. .
CHEMISTRY OF MATERIALS, 2007, 19 (19) :4682-4693
[10]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)