A Variogram Analysis of Build Height Effects in an Additively Manufactured AlSi10Mg Part

被引:12
|
作者
Everett, R. K. [1 ]
Duffy, M. E. [1 ]
Storck, S. M. [2 ]
Zupan, M. [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Mech Engn, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
关键词
powder bed fusion; mechanical properties; micmtensile testing; spatial data analysis; variogram; MECHANICAL-PROPERTIES; SPATIAL VARIABILITY; MICROSTRUCTURE; LOCATION;
D O I
10.1016/j.addma.2020.101306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Variations in local processing parameters and conditions in additively manufactured materials make mechanical properties difficult to characterize. Microtensile testing is providing a wealth of information on these local property variations. Here we utilize spatial autocorrelation techniques to show autocorrelation of grain sizes and mechanical properties with build height in a specially-designed, additively manufactured AlSi10Mg part. This result suggests that, at least in some cases, an interplay between local part geometry and the fabrication process occurs that affects local mechanical properties.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] High throughput determination of creep behavior of additively manufactured AlSi10Mg alloy
    Singh, Shobhit Pratap
    Jayaram, Vikram
    Srinivasan, Dheepa
    Kumar, Praveen
    ADDITIVE MANUFACTURING, 2022, 58
  • [22] Laser welding of additively manufactured AlSi10Mg and conventionally manufactured Al6061 alloy
    Vishwakarma, A. K.
    Debnath, D.
    Pawar, M. D.
    Muthiyan, V.
    Gautam, B.
    Khatirkar, R.
    Shekhar, Himanshu
    Hiwarkar, V. D.
    WELDING IN THE WORLD, 2024, 68 (07) : 1731 - 1745
  • [23] Defects as a root cause of fatigue weakening of additively manufactured AlSi10Mg components
    Ferro, Paolo
    Fabrizi, Alberto
    Berto, Filippo
    Savio, Gianpaolo
    Meneghello, Roberto
    Rosso, Stefano
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 108
  • [24] Effect of direct metal laser sintering build parameters on defects and ultrasonic fatigue performance of additively manufactured AlSi10Mg
    Rhein, Robert K.
    Shi, Qianying
    Arjun Tekalur, Srinivasan
    Wayne Jones, J.
    Carroll, Jason W.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (02) : 295 - 305
  • [25] Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg
    Fiegl, Tobias
    Franke, Martin
    Koerner, Carolin
    OPTICS AND LASER TECHNOLOGY, 2019, 111 : 51 - 57
  • [26] The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg
    Strumza, Einat
    Yeheskel, Ori
    Hayun, Shmuel
    ADDITIVE MANUFACTURING, 2019, 29
  • [27] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    A. Ben-Artzy
    G. Hadad
    A. Bussiba
    M. Nahmany
    Progress in Additive Manufacturing, 2022, 7 : 201 - 212
  • [28] Micromechanical modeling of the low-cycle fatigue behavior of additively manufactured AlSi10Mg
    Rajan, Aravindh Nammalvar Raja
    Krochmal, Marcel
    Shahmardani, Mahdieh
    Wegener, Thomas
    Hartmaier, Alexander
    Niendorf, Thomas
    Moeini, Ghazal
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 879
  • [29] The Corrosion Behaviour of Additively Manufactured AlSi10Mg Parts Compared to Traditional Al Alloys
    Gatto, Andrea
    Cappelletti, Camilla
    Defanti, Silvio
    Fabbri, Fabrizio
    METALS, 2023, 13 (05)
  • [30] Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure
    Kan, Wen Hao
    Nadot, Yves
    Foley, Matthew
    Ridosz, Lionel
    Proust, Gwenaelle
    Cairney, Julie M.
    ADDITIVE MANUFACTURING, 2019, 29