Interactive Multi-Objective Particle Swarm Optimisation using Decision Space Interaction

被引:0
|
作者
Heuenhausen, Jan [1 ]
Lewis, Andrew [1 ]
Randall, Marcus [2 ]
Kipouros, Timoleon [3 ]
机构
[1] Griffith Univ, Inst Integrated & Intelligent Syst, Brisbane, Qld 4111, Australia
[2] Bond Univ, Fac Business, Gold Coast, Australia
[3] Univ Cambridge, Dept Engn, Cambridge, England
来源
2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2013年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO.
引用
收藏
页码:3411 / 3418
页数:8
相关论文
共 50 条
  • [1] Multi-Objective Generation Dispatch Using Particle Swarm Optimisation
    Rani, C.
    Kumar, M. Rajesh
    Pavan, K.
    INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONIC S, 2006, : 421 - 424
  • [2] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [3] A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition
    Al Moubayed, Noura
    Petrovski, Andrei
    McCall, John
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XI, PT II, 2010, 6239 : 1 - 10
  • [4] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [5] An evolutionary particle swarm algorithm for multi-objective optimisation
    Chen, Minyou
    Wu, Chuansheng
    Fleming, Peter
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 3269 - +
  • [6] Enhanced multi-objective particle swarm optimisation postures
    Saremi, Shahrzad
    Mirjalili, Seyedali
    Lewis, Andrew
    Liew, Alan Wee Chung
    Dong, Jin Song
    KNOWLEDGE-BASED SYSTEMS, 2018, 158 : 175 - 195
  • [7] A multi-objective interactive dynamic particle swarm optimizer
    Barba-Gonzalez, Cristobal
    Nebro, Antonio J.
    Garcia-Nieto, Jose
    Aldana-Montes, Jose F.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (01) : 55 - 65
  • [8] A multi-objective interactive dynamic particle swarm optimizer
    Cristóbal Barba-González
    Antonio J. Nebro
    José García-Nieto
    José F. Aldana-Montes
    Progress in Artificial Intelligence, 2020, 9 : 55 - 65
  • [9] Decision Space Scalability Analysis of Multi-Objective Particle Swarm Optimization Algorithms
    Madani, Amirali
    Ombuki-Berman, Beatrice
    Engelbrecht, Andries
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 2179 - 2186
  • [10] Water distribution system design using multi-objective particle swarm optimisation
    Patil, Mahesh B.
    Naidu, M. Naveen
    Vasan, A.
    Varma, Murari R. R.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2020, 45 (01):