Approximation Algorithms for Massive High-Rate Data Streams

被引:0
作者
Cuzzocrea, Alfredo [1 ]
机构
[1] ICAR CNR, Rome, Italy
来源
NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS | 2013年 / 185卷
关键词
COMPRESSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper complements our line of research on effectively and efficiently processing massive high-rate data streams via intelligent compression techniques. In particular, here we provide approximation algorithms adhering to the so-called non-linear data stream compression paradigm. This paradigm demonstrates its feasibility and reliability in the context of emerging data stream applications, such as environmental sensor networks.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 25 条
  • [1] Abadi D., 2004, Proceedings of the 30th International Conference on Very Large Data Bases Endowment, V30, P1361
  • [2] [Anonymous], 1998, ART COMPUTER PROGRAM
  • [3] BABCOCK B, 2002, ACM PODS
  • [4] Cai Y.D., 2004, ACM SIGMOD
  • [5] Cormode G., 2007, Proceedings ACM SIGMOD International Conference on Management of Data (SIG-MOD'07), P281
  • [6] Cuzzocrea A, 2004, LECT NOTES COMPUT SC, V3292, P144
  • [7] Cuzzocrea A., 2008, ENCY DATABASE TECHNO
  • [8] Cuzzocrea A., 2004, GEOSENSOR NETWORKS
  • [9] Cuzzocrea A., 2010, DATA KNOWL ENG, V69
  • [10] Cuzzocrea A., 2009, IGI GLOBAL