Invariant universality for quandles and fields

被引:1
作者
Brooke-Taylor, Andrew D. [1 ]
Calderoni, Filippo [2 ]
Miller, Sheila K. [3 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60613 USA
[3] 28 Archuleta Rd, Ranchos De Taos, NM 87557 USA
基金
英国工程与自然科学研究理事会;
关键词
analytic quasi-orders; invariant universality; quandles; fields; EMBEDDABILITY;
D O I
10.4064/fm862-2-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the embeddability relations for countable quandles and for countable fields of any given characteristic other than 2 are maximally complex in a strong sense: they are invariantly universal. This notion from the theory of Borel reducibility states that any analytic quasi-order on a standard Borel space essentially appears as the restriction of the embeddability relation to an isomorphism-invariant Borel set. As an intermediate step we show that the embeddability relation of countable quandles is a complete analytic quasi-order.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 18 条
[1]  
Becker H., 1996, LONDON MATH SOC LECT, V232
[2]   THE QUANDARY OF QUANDLES: A BOREL COMPLETE KNOT INVARIANT [J].
Brooke-Taylor, Andrew D. ;
Miller, Sheila K. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (02) :262-277
[3]   THE COMPLEXITY OF THE EMBEDDABILITY RELATION BETWEEN TORSION-FREE ABELIAN GROUPS OF UNCOUNTABLE SIZE [J].
Calderoni, Filippo .
JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (02) :703-716
[4]   UNIVERSALITY OF GROUP EMBEDDABILITY [J].
Calderoni, Filippo ;
Motto Ros, Luca .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) :1765-1780
[5]   On isometry and isometric embeddability between ultrametric Polish spaces [J].
Camerlo, Riccardo ;
Marcone, Alberto ;
Ros, Luca Motto .
ADVANCES IN MATHEMATICS, 2018, 329 :1231-1284
[6]  
Camerlo R, 2013, T AM MATH SOC, V365, P1901
[7]  
Elhamdadi M., 2015, Student Mathematical Library, V74
[8]  
Fried E., 1982, C MATH SOC J BOLYAI, V29, P293
[9]   A BOREL REDUCIBILITY THEORY FOR CLASSES OF COUNTABLE STRUCTURES [J].
FRIEDMAN, H ;
STANLEY, L .
JOURNAL OF SYMBOLIC LOGIC, 1989, 54 (03) :894-914
[10]   ANALYTIC EQUIVALENCE RELATIONS AND BI-EMBEDDABILITY [J].
Friedman, Sy-David ;
Motto Ros, Luca .
JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (01) :243-266