Invariant universality for quandles and fields

被引:1
作者
Brooke-Taylor, Andrew D. [1 ]
Calderoni, Filippo [2 ]
Miller, Sheila K. [3 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60613 USA
[3] 28 Archuleta Rd, Ranchos De Taos, NM 87557 USA
基金
英国工程与自然科学研究理事会;
关键词
analytic quasi-orders; invariant universality; quandles; fields; EMBEDDABILITY;
D O I
10.4064/fm862-2-2020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the embeddability relations for countable quandles and for countable fields of any given characteristic other than 2 are maximally complex in a strong sense: they are invariantly universal. This notion from the theory of Borel reducibility states that any analytic quasi-order on a standard Borel space essentially appears as the restriction of the embeddability relation to an isomorphism-invariant Borel set. As an intermediate step we show that the embeddability relation of countable quandles is a complete analytic quasi-order.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 18 条
  • [1] Becker Howard, 1996, LONDON MATH SOC LECT, V232
  • [2] THE QUANDARY OF QUANDLES: A BOREL COMPLETE KNOT INVARIANT
    Brooke-Taylor, Andrew D.
    Miller, Sheila K.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (02) : 262 - 277
  • [3] THE COMPLEXITY OF THE EMBEDDABILITY RELATION BETWEEN TORSION-FREE ABELIAN GROUPS OF UNCOUNTABLE SIZE
    Calderoni, Filippo
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (02) : 703 - 716
  • [4] UNIVERSALITY OF GROUP EMBEDDABILITY
    Calderoni, Filippo
    Motto Ros, Luca
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (04) : 1765 - 1780
  • [5] On isometry and isometric embeddability between ultrametric Polish spaces
    Camerlo, Riccardo
    Marcone, Alberto
    Ros, Luca Motto
    [J]. ADVANCES IN MATHEMATICS, 2018, 329 : 1231 - 1284
  • [6] Camerlo R, 2013, T AM MATH SOC, V365, P1901
  • [7] Elhamdadi M., 2015, STUDENT MATH LIB, V74
  • [8] Fried E., 1982, C MATH SOC J BOLYAI, V29, P293
  • [9] A BOREL REDUCIBILITY THEORY FOR CLASSES OF COUNTABLE STRUCTURES
    FRIEDMAN, H
    STANLEY, L
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1989, 54 (03) : 894 - 914
  • [10] ANALYTIC EQUIVALENCE RELATIONS AND BI-EMBEDDABILITY
    Friedman, Sy-David
    Motto Ros, Luca
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (01) : 243 - 266