Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations

被引:28
作者
Abdelkawy, M. A. [1 ,2 ]
Lopes, Antonio M. [3 ]
Zaky, M. A. [4 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[3] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
[4] Natl Res Ctr, Dept Appl Math, Giza 12622, Egypt
关键词
Spectral collocation method; Caputo fractional derivative; Distributed order fractional reaction-diffusion equation; NUMERICAL-SOLUTION; WAVE EQUATION; APPROXIMATION; DYNAMICS;
D O I
10.1007/s40314-019-0845-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a new method for solving distributed order time-fractional reaction-diffusion equations (DO-TFRDEs). Extended versions of the shifted Jacobi-Gauss-Lobatto and shifted fractional order Jacobi-Gauss-Radau collocation methods are developed for reducing the DO-TFRDEs to systems of algebraic equations and computing their approximate solutions. The applicability and accuracy of the method is illustrated through numerical examples.
引用
收藏
页数:21
相关论文
共 46 条
[1]  
Abdelkawy MA, 2015, ROM REP PHYS, V67, P773
[2]   Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations [J].
Atangana, Abdon ;
Alabaraoye, Ernestine .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[3]  
BHRAWY A, 2012, ROM J PHYS, V59, P646
[4]   A fully spectral collocation approximation formulti-dimensional fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 :462-483
[5]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895
[6]   An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system [J].
Bhrawy, A. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 :30-46
[7]  
Chechkin AV., 2003, J Fract Calc Appl Anal, V6, P259
[8]   Numerical analysis for distributed-order differential equations [J].
Diethelm, Kai ;
Ford, Neville J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :96-104
[9]   Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrodinger equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Van Gorder, Robert A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 261 :244-255
[10]   Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (12) :5662-5672