ACCURATE COMPUTATIONS WITH COLLOCATION MATRICES OF q-BERNSTEIN POLYNOMIALS

被引:38
作者
Delgado, Jorge [1 ]
Pena, J. M. [2 ]
机构
[1] Univ Zaragoza, Escuela Univ Politecn Teruel, Dept Matemat Aplicada, E-44071 Teruel, Spain
[2] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
关键词
accurate computations; bidiagonal decompositions; totally positive matrices; q-Bernstein basis; TOTALLY NONNEGATIVE MATRICES; NEVILLE ELIMINATION; POSITIVE MATRICES; BASES;
D O I
10.1137/140993211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The q-Bernstein-Vandermonde matrices are the collocation matrices of the q-Bernstein basis. This paper provides a method that allows us to compute to high relative accuracy the eigenvalues and singular values of these matrices, as well as their inverses.
引用
收藏
页码:880 / 893
页数:14
相关论文
共 20 条
[1]   TOTALLY POSITIVE MATRICES [J].
ANDO, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 :165-219
[2]  
[Anonymous], 2010, Cambridge Tracts in Mathematics
[3]  
Carnicer JM., 1993, ADV COMPUT MATH, V1, P173, DOI DOI 10.1007/BF02071384
[4]   Accurate computations with collocation matrices of rational bases [J].
Delgado, J. ;
Pena, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4354-4364
[5]   The accurate and efficient solution of a totally positive generalized Vandermonde linear system [J].
Demmel, J ;
Koev, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (01) :142-152
[6]   Computing the singular value decomposition with high relative accuracy [J].
Demmel, J ;
Gu, M ;
Eisenstat, S ;
Slapnicar, I ;
Veselic, K ;
Drmac, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :21-80
[7]  
Fallat S.M., 2011, PRINCETON SER APPL M
[8]  
Gasca M, 1996, MATH APPL, V359, P109
[9]   A MATRICIAL DESCRIPTION OF NEVILLE ELIMINATION WITH APPLICATIONS TO TOTAL POSITIVITY [J].
GASCA, M ;
PENA, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :33-53
[10]   TOTAL POSITIVITY AND NEVILLE ELIMINATION [J].
GASCA, M ;
PENA, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 165 :25-44