Combined SMAP-SMOS thin sea ice thickness retrieval

被引:27
作者
Patilea, Catalin [1 ]
Heygster, Georg [1 ]
Huntemann, Marcus [1 ,2 ]
Spreen, Gunnar [1 ]
机构
[1] Univ Bremen, Inst Environm Phys, Bremen, Germany
[2] Alfred Wegener Inst, Bremerhaven, Germany
基金
欧盟地平线“2020”;
关键词
SOIL-MOISTURE RETRIEVAL; BRIGHTNESS TEMPERATURE; L-BAND; SALINITY; PERFORMANCE; CALIBRATION; SPACE;
D O I
10.5194/tc-13-675-2019
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The spaceborne passive microwave sensors Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) provide brightness temperature data in the L band (1.4 GHz). At this low frequency the atmosphere is close to transparent and in polar regions the thickness of thin sea ice can be derived. SMOS measurements cover a large incidence angle range, whereas SMAP observes at a fixed 40 degrees incidence angle. By using brightness temperatures at a fixed incidence angle obtained directly (SMAP), or through interpolation (SMOS), thin sea ice thickness retrieval is more consistent as the incidence angle effects do not have to be taken into account. Here we transfer a retrieval algorithm for the thickness of thin sea ice (up to 50 cm) from SMOS data at 40 to 50 degrees incidence angle to the fixed incidence angle of SMAP. The SMOS brightness temperatures (TBs) at a given incidence angle are estimated using empirical fit functions. SMAP TBs are calibrated to SMOS to provide a merged SMOS-SMAP sea ice thickness product. The new merged SMOS-SMAP thin ice thickness product was improved upon in several ways compared to previous thin ice thickness retrievals. (i) The combined product provides a better temporal and spatial coverage of the polar regions due to the usage of two sensors. (ii) The radio frequency interference (RFI) filtering method was improved, which results in higher data availability over both ocean and sea ice areas. (iii) For the intercalibration between SMOS and SMAP brightness temperatures the root mean square difference (RMSD) was reduced by 30% relative to a prior attempt. (iv) The algorithm presented here allows also for separate retrieval from any of the two sensors, which makes the ice thickness dataset more resistant against failure of one of the sensors. A new way to estimate the uncertainty of ice thickness retrieval was implemented, which is based on the brightness temperature sensitivities.
引用
收藏
页码:675 / 691
页数:17
相关论文
共 45 条
[21]   SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone [J].
Kaleschke, Lars ;
Tian-Kunze, Xiangshan ;
Maass, Nina ;
Beitsch, Alexander ;
Wernecke, Andreas ;
Miernecki, Maciej ;
Mueller, Gerd ;
Fock, Bjoern H. ;
Gierisch, Andrea M. U. ;
Schluenzen, K. Heinke ;
Pohlmann, Thomas ;
Dobrynin, Mikhail ;
Hendricks, Stefan ;
Asseng, Joelund ;
Gerdes, Ruediger ;
Jochmann, Peter ;
Reimer, Nils ;
Holfort, Juergen ;
Melsheimer, Christian ;
Heygster, Georg ;
Spreen, Gunnar ;
Gerland, Sebastian ;
King, Jennifer ;
Skou, Niels ;
Sobjaerg, Sten Schmidl ;
Haas, Christian ;
Richter, Friedrich ;
Casal, Tania .
REMOTE SENSING OF ENVIRONMENT, 2016, 180 :264-273
[22]   The SMOS Soil Moisture Retrieval Algorithm [J].
Kerr, Yann H. ;
Waldteufel, Philippe ;
Richaume, Philippe ;
Wigneron, Jean Pierre ;
Ferrazzoli, Paolo ;
Mahmoodi, Ali ;
Al Bitar, Ahmad ;
Cabot, Francois ;
Gruhier, Claire ;
Juglea, Silvia Enache ;
Leroux, Delphine ;
Mialon, Arnaud ;
Delwart, Steven .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05) :1384-1403
[23]   Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission [J].
Kerr, YH ;
Waldteufel, P ;
Wigneron, JP ;
Martinuzzi, JM ;
Font, J ;
Berger, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1729-1735
[24]   Land Contamination Analysis of SMOS Brightness Temperature Error Near Coastal Areas [J].
Li, Yan ;
Li, Qingxia ;
Lu, Hailiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) :587-591
[25]   SMOS instrument performance and calibration after six years in orbit [J].
Martin-Neira, M. ;
Oliva, R. ;
Corbella, I. ;
Torres, F. ;
Duffo, N. ;
Duran, I. ;
Kainulainen, J. ;
Closa, J. ;
Zurita, A. ;
Cabot, F. ;
Khazaal, A. ;
Anterrieu, E. ;
Barbosa, J. ;
Lopes, G. ;
Tenerelli, J. ;
Diez-Garcia, R. ;
Fauste, J. ;
Martin-Porqueras, F. ;
Gonzalez-Gambau, V. ;
Turiel, A. ;
Delwart, S. ;
Crapolicchio, R. ;
Suess, M. .
REMOTE SENSING OF ENVIRONMENT, 2016, 180 :19-39
[26]   ENERGY EXCHANGE OVER YOUNG SEA ICE IN CENTRAL ARCTIC [J].
MAYKUT, GA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1978, 83 (NC7) :3646-3658
[27]   SMOS:: The payload [J].
McMullan, K. D. ;
Brown, Michael A. ;
Martin-Neira, Manuel ;
Rits, W. ;
Ekholm, S. ;
Marti, J. ;
Lemanczyk, J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03) :594-605
[28]   ESA's Soil Moisture and Ocean Salinity Mission: Mission Performance and Operations [J].
Mecklenburg, Susanne ;
Drusch, Matthias ;
Kerr, Yann H. ;
Font, Jordi ;
Martin-Neira, Manuel ;
Delwart, Steven ;
Buenadicha, Guillermo ;
Reul, Nicolas ;
Daganzo-Eusebio, Elena ;
Oliva, Roger ;
Crapolicchio, Raffaele .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05) :1354-1366
[29]   Sea Ice Emissivity Modeling at L-Band and Application to 2007 Pol-Ice Campaign Field Data [J].
Mills, Peter ;
Heygster, Georg .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (02) :612-627
[30]   SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations [J].
Mohammed, Priscilla N. ;
Aksoy, Mustafa ;
Piepmeier, Jeffrey R. ;
Johnson, Joel T. ;
Bringer, Alexandra .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6035-6047