The synthesis and characterization of hydrogen-bonded star-shaped complexes consisting of stilbazolyloxy, azopyridyl, and Schiff base-substituted cyclotriphosphazenes (3a, 3b, and 3c, respectively) and monoalkyloxy, bis(dodecyloxy), and tris(dodecyloxy)benzoic acids are reported. The thermal behaviors of complexes are studied by the means of differential scanning calorimetry, polarizing optical microscopy, and X-ray diffractometry. Only 3a and 3b with monoalkyloxybenzoic acids show a homeotropic smectic A mesophase. The effect of azo and ethylene linkage of mesogenic groups in the cyclotriphosphazenes and the length of the flexible chain in monoalkyloxybenzoic acids on mesophase transition behaviors are investigated, revealing that the linkages in mesogenic groups governs the phase transition temperatures, and the length of flexible chain in proton donors plays an important role in controlling the magnitude of enthalpy and entropy of mesophase transitions in this supramolecular liquid crystal system. (C) 2008 Wiley Periodicals, Inc.