Hierarchic models for laminated plates and shells

被引:56
作者
Actis, RL
Szabo, BA [1 ]
Schwab, C
机构
[1] Washington Univ, Ctr Computat Mech, St Louis, MO 63130 USA
[2] Engn Software Res & Dev Inc, St Louis, MO USA
[3] Swiss Fed Inst Technol, Seminar Appl Math, Zurich, Switzerland
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0045-7825(98)00226-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The definition, essential properties and formulation of hierarchic models for laminated plates and shells are presented. The hierarchic models satisfy three essential requirements: approximability; asymptotic consistency, and optimality of convergence rate. Aspects of implementation are discussed and the performance characteristics are illustrated by examples. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:79 / 107
页数:29
相关论文
共 19 条
[1]  
Actis R. L., 1993, Finite Elements in Analysis and Design, V13, P149, DOI 10.1016/0168-874X(93)90054-T
[2]  
Actis R. L., 1991, THESIS WASHINGTON U
[3]  
ACTIS RL, 1993, DESIGN ANAL LAMINATE
[4]  
ACTIS RL, 1997, DMI9321005 NAT SCI F
[5]   THE BOUNDARY-LAYER FOR THE REISSNER-MINDLIN PLATE MODEL [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (02) :281-312
[6]   HIERARCHICAL-MODELS FOR LAMINATED COMPOSITES [J].
BABUSKA, I ;
SZABO, BA ;
ACTIS, RL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (03) :503-535
[7]  
BERNADOU M, 1997, P INT C SHELLS SANT
[8]   Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle [J].
Chen, Q ;
Babuska, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :405-417
[9]  
Dally J.W., 1978, Experimental Stress Analysis, V2nd
[10]  
GERDES K, 1997, IN PRESS ZAMM