Strength limit of entropic elasticity in beta-sheet protein domains

被引:32
|
作者
Keten, Sinan [1 ]
Buehler, Markus J. [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, Lab Atomist & Mol Mech, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
基金
美国国家科学基金会;
关键词
biomechanics; entropy; free energy; hydrogen bonds; molecular biophysics; molecular configurations; proteins;
D O I
10.1103/PhysRevE.78.061913
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Elasticity and strength of individual beta-sheet protein domains govern key biological functions and the mechanical properties of biopolymers including spider silk, amyloids, and muscle fibers. The worm-like-chain (WLC) model is commonly used to describe the entropic elasticity of polypeptides and other biomolecules. However, force spectroscopy experiments have shown pronounced deviations from the ideal WLC behavior, leading to controversial views about the appropriate elastic description of proteins at nanoscale. Here we report a simple model that explains the physical mechanism that leads to the breakdown of the WLC idealization in experiments by using only two generic parameters of the protein domain, the H-bond energy and the protein backbone's persistence length. We show that a rupture initiation condition characterized by the free energy release rate of H-bonds characterizes the limit of WLC entropic elasticity of beta-sheet protein domains and the onset of rupture. Our findings reveal that strength and elasticity are coupled and cannot be treated separately. The predictions of the model are compared with atomic force microscopy experiments of protein rupture.
引用
收藏
页数:7
相关论文
empty
未找到相关数据