Wavelet Tree Support Detection for Compressed Sensing MRI Reconstruction

被引:13
作者
Deka, Bhabesh [1 ]
Datta, Sumit [1 ]
Handique, Sanjeev [2 ]
机构
[1] Tezpur Univ, Dept Elect & Commun Engn, Tezpur 784028, India
[2] GNRC, Dept Radiol & Imaging, Gauhati 781006, India
关键词
Compressed sensing magnetic resonance imaging (CS-MRI); hidden Markov tree (HMT); just noticeable difference scanning (JNDS); wavelet tree support; HIDDEN MARKOV-MODELS; RESONANCE IMAGE-RECONSTRUCTION; SIGNAL RECONSTRUCTION; SPARSITY;
D O I
10.1109/LSP.2018.2824251
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A priori knowledge of the signal/ image support based on its statistical and structural information in the transformed domain improves the quality of compressed sensing (CS) reconstruction. Hidden Markov tree models the wavelet domain support of magnetic resonance images obtained from undersampled k-space data very well. With the support information, parent-child pairs in the wavelet tree are detected accurately, and hence, iterative regularization problems for CS-based magnetic resonance imaging reconstruction are solved with high throughputs. Simulation results with artificial and real MRI datasets show significant improvements over existing methods in terms of just noticeable difference scanning besides other objective and subjective metrics.
引用
收藏
页码:730 / 734
页数:5
相关论文
共 32 条
[1]  
Aja-Fernandez Santiago, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P4815
[2]   Compressed Sensing With Wavelet Domain Dependencies for Coronary MRI: A Retrospective Study [J].
Akcakaya, Mehmet ;
Nam, Seunghoon ;
Hu, Peng ;
Moghari, Mehdi H. ;
Ngo, Long H. ;
Tarokh, Vahid ;
Manning, Warren J. ;
Nezafat, Reza .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) :1090-1099
[3]  
[Anonymous], 2002, REC ITU R BT 500 11
[4]  
[Anonymous], P 17 ANN M ISMRM
[5]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[6]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[7]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[8]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[9]   Exploiting the wavelet structure in compressed sensing MRI [J].
Chen, Chen ;
Huang, Junzhou .
MAGNETIC RESONANCE IMAGING, 2014, 32 (10) :1377-1389
[10]   The benefit of tree sparsity in accelerated MRI [J].
Chen, Chen ;
Huang, Junzhou .
MEDICAL IMAGE ANALYSIS, 2014, 18 (06) :834-842