Integrals based on monotone set functions

被引:55
|
作者
Klement, Erich Peter [1 ,2 ]
Li, Jun [3 ]
Mesiar, Radko [4 ,5 ]
Pap, Endre [6 ,7 ]
机构
[1] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[2] JKU Softwarepk Hagenberg, A-4232 Hagenberg, Austria
[3] Commun Univ China, Sch Sci, Beijing 100024, Peoples R China
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
[5] Univ Ostrava, CZ-70103 Ostrava, Czech Republic
[6] Singidunum Univ, Belgrade 11000, Serbia
[7] Obuda Univ, H-1034 Budapest, Hungary
基金
中国国家自然科学基金;
关键词
Monotone measure; Choquet integral; Shilkret integral; Sugeno integral; Universal integral; Decomposition integral; CHEBYSHEV TYPE INEQUALITIES; FUZZY MEASURES; CHOQUET; SUGENO; DISTRIBUTIVITY; MULTIPLICATION; CONVERGENCE; PROBABILITY;
D O I
10.1016/j.fss.2015.07.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An overview of various integrals is given which can be defined on arbitrary monotone set functions vanishing in the empty set (called here monotone measures). Our survey includes not onlythe Choquet integral (1954) [10], the Shilkret integral (1971) [66] and the Sugeno integral (1974) [71] and some of their properties, but also some more general and more recent concepts as universal integrals Klement etal. (2010) [27] and decomposition integrals Even (2014) [13], together with some of their properties, such as integral inequalities and convergence theorems. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [41] Dilatation monotone and comonotonic additive risk measures represented as Choquet integrals
    Grigoriev, Pavel G.
    Leitner, Johannes
    STATISTICS & RISK MODELING, 2006, 24 (01) : 27 - 44
  • [42] Uniform and Pointwise Quantitative Approximation by Kantorovich-Choquet Type Integral Operators with Respect to Monotone and Submodular Set Functions
    Gal, Sorin G.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
  • [43] Set-valued Choquet integrals revisited
    Zhang, DL
    Guo, CM
    Liu, DY
    FUZZY SETS AND SYSTEMS, 2004, 147 (03) : 475 - 485
  • [44] The smallest semicopula-based universal integrals I: Properties and characterizations
    Borzova-Molnarova, Jana
    Halcinova, Lenka
    Hutnik, Ondrej
    FUZZY SETS AND SYSTEMS, 2015, 271 : 1 - 17
  • [45] Sensitivity analysis of biological Boolean networks using information fusion based on nonadditive set functions
    Kochi, Naomi
    Helikar, Tomas
    Allen, Laura
    Rogers, Jim A.
    Wang, Zhenyuan
    Matache, Mihaela T.
    BMC SYSTEMS BIOLOGY, 2014, 8
  • [46] Monotone Set-Valued Function Defined by Set-Valued Choquet Integral
    孙红霞
    张强
    Journal of Beijing Institute of Technology, 2010, 19 (02) : 241 - 245
  • [47] Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem
    Gagolewski, Marek
    Mesiar, Radko
    INFORMATION SCIENCES, 2014, 263 : 166 - 174
  • [48] SET-VALUED CHOQUET-PETTIS INTEGRALS
    Park, Chun-Kee
    KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (04): : 381 - 393
  • [49] A Hadamard-type inequality for fuzzy integrals based on r-convex functions
    Abbaszadeh, Sadegh
    Eshaghi, Madjid
    SOFT COMPUTING, 2016, 20 (08) : 3117 - 3124
  • [50] A Hadamard-type inequality for fuzzy integrals based on r-convex functions
    Sadegh Abbaszadeh
    Madjid Eshaghi
    Soft Computing, 2016, 20 : 3117 - 3124