Integrals based on monotone set functions

被引:56
作者
Klement, Erich Peter [1 ,2 ]
Li, Jun [3 ]
Mesiar, Radko [4 ,5 ]
Pap, Endre [6 ,7 ]
机构
[1] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[2] JKU Softwarepk Hagenberg, A-4232 Hagenberg, Austria
[3] Commun Univ China, Sch Sci, Beijing 100024, Peoples R China
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Bratislava 81368, Slovakia
[5] Univ Ostrava, CZ-70103 Ostrava, Czech Republic
[6] Singidunum Univ, Belgrade 11000, Serbia
[7] Obuda Univ, H-1034 Budapest, Hungary
基金
中国国家自然科学基金;
关键词
Monotone measure; Choquet integral; Shilkret integral; Sugeno integral; Universal integral; Decomposition integral; CHEBYSHEV TYPE INEQUALITIES; FUZZY MEASURES; CHOQUET; SUGENO; DISTRIBUTIVITY; MULTIPLICATION; CONVERGENCE; PROBABILITY;
D O I
10.1016/j.fss.2015.07.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An overview of various integrals is given which can be defined on arbitrary monotone set functions vanishing in the empty set (called here monotone measures). Our survey includes not onlythe Choquet integral (1954) [10], the Shilkret integral (1971) [66] and the Sugeno integral (1974) [71] and some of their properties, but also some more general and more recent concepts as universal integrals Klement etal. (2010) [27] and decomposition integrals Even (2014) [13], together with some of their properties, such as integral inequalities and convergence theorems. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 76 条
[1]   On Stolarsky inequality for Sugeno and Choquet integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Ouyang, Yao ;
Pap, Endre ;
Strboja, Mirjana .
INFORMATION SCIENCES, 2014, 266 :134-139
[2]   Generalizations of the Chebyshev-type inequality for Choquet-like expectation [J].
Agahi, Hamzeh ;
Mohammadpour, Adel ;
Mesiar, Radko .
INFORMATION SCIENCES, 2013, 236 :168-173
[3]   On some advanced type inequalities for Sugeno integral and T-(S-)evaluators [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Ouyang, Yao .
INFORMATION SCIENCES, 2012, 190 :64-75
[4]   General Chebyshev type inequalities for universal integral [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Ouyang, Yao ;
Pap, Endre ;
Strboja, Mirjana .
INFORMATION SCIENCES, 2012, 187 :171-178
[5]   ON OPTIMAL AVERAGES [J].
AGBEKO, NK .
ACTA MATHEMATICA HUNGARICA, 1994, 63 (02) :133-147
[6]  
[Anonymous], 2000, TRIANGULAR NORMS TRE
[7]  
[Anonymous], J FUZZY MATH
[8]  
[Anonymous], RANDOM SETS THEORY A
[9]  
[Anonymous], NOVA METHODUS PROMAX
[10]  
[Anonymous], CHAPMAN HALL CRC MON