Effect of off-axis angle on low-velocity impact and compression after impact damage mechanisms of 3D woven composites

被引:34
|
作者
Zhang, Diantang [1 ]
Gu, Yuanhui [1 ]
Zhang, Zhongwei [2 ]
Jia, Minghao [1 ]
Yue, Songlin [2 ]
Li, Gan [2 ]
机构
[1] Jiangnan Univ, Key Lab Ecotext, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Army Engn Univ PLA, State Key Lab Explos & Impact & Disaster Prevent, Nanjing 210007, Peoples R China
关键词
3-Dimensional reinforcement; Mechanical properties; Impact; Compression after impact; Damage mechanism; Micro-CT analysis; CARBON-FIBER COMPOSITES; FAILURE MODES; AFTER-IMPACT; DELAMINATION; RESISTANCE; BEHAVIORS; TOLERANCE; INPLANE; 2D;
D O I
10.1016/j.matdes.2020.108672
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the influence of the off-axis angles on the low-velocity impact (LVI) and compression after impact (CAI) damage mechanism of three-dimensional (3D) woven carbon/epoxy composites. Three kind of samples with different angles, 0 degrees, 30 degrees and 45 degrees, of the weft and warp yarn orientation were experimentally tested using the drop weight LVI and quasi-static CAI equipment. X-ray micro-computed tomography (Micro-CT) techniques were used to identify the impact damage volumes, damage distribution and damage modes of 3D woven composites. Results indicated that the off-axis angles have significant effects on the LVI and CAI mechanical behavior and final failure mechanisms. Furthermore, Micro-CT revealed that off-axis samples exhibit more damage volumes and out-of-plane deformation. More importantly, the ultimate CAI strength of all the samples are largely governed by the global buckling. However, the formation of buckling damage in 0 degrees samples runs from one edge of the specimen to the other side, whereas that in 30 degrees and 45 degrees samples mainly occur along the weft direction. (c) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites
    Potluri, P.
    Hogg, P.
    Arshad, M.
    Jetavat, D.
    Jamshidi, P.
    APPLIED COMPOSITE MATERIALS, 2012, 19 (05) : 799 - 812
  • [32] Low-velocity impact and compression after impact behaviour of nanoparticles modified polymer composites
    Elamvazhudi, B.
    Gopalakannan, S.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024, 43 (23-24) : 1340 - 1355
  • [33] PERMISSIBLE LOW VELOCITY IMPACT DEFECTS IN ORGANIC 3D WOVEN COMPOSITES
    Elias, A.
    Kaminski, M.
    Laurin, F.
    Gornet, L.
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [34] Low-Velocity Impact and Compression-After-Impact Behaviour of Flax Fibre-Reinforced Composites
    Li, Yan
    Zhong, Junjie
    Fu, Kunkun
    ACTA MECHANICA SOLIDA SINICA, 2020, 33 (04) : 431 - 448
  • [35] Effect of off-axial angle on the low-velocity impact performance of braided laminates
    Wu, Zhenyu
    Huang, Lingmin
    Pan, Zhongxiang
    Zhang, Baoming
    Hu, Xudong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 216
  • [36] Review: impact resistance and damage tolerance of 3D woven composites
    Chowdhury, Soumya
    Tripathi, Lekhani
    Behera, Bijoya Kumar
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (18) : 7636 - 7699
  • [37] Compression after multiple low velocity impacts of NCF, 2D and 3D woven composites
    Saleh, Mohamed Nasr
    El-Dessouky, Hassan M.
    Saeedifar, Milad
    De Freitas, Sofia Teixeira
    Scaife, Richard J.
    Zarouchas, Dimitrios
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 125
  • [38] Mode-I fracture crack growth behaviors of 3-D angle interlock woven composites under low-velocity wedge-loaded impact
    Wang, Lei
    Sun, Baozhong
    Gu, Bohong
    ENGINEERING FRACTURE MECHANICS, 2021, 242
  • [39] Failure behaviors of 3D braided composites with defects in different locations under low-velocity impact compression
    Guo, Jinhui
    Sun, Baozhong
    Gu, Bohong
    Zhang, Wei
    TEXTILE RESEARCH JOURNAL, 2022, 92 (1-2) : 196 - 209
  • [40] Low-velocity impact damage in laminated composites materials
    Wang, H
    Vu-Khanh, T
    IMPACT RESPONSE AND DYNAMIC FAILURE OF COMPOSITES AND LAMINATE MATERIALS, PTS 1 AND 2, 1998, 141-1 : 277 - 304