Teitelbaum's exceptional zero conjecture in the anticyclotomic setting

被引:18
作者
Bertolini, M [1 ]
Darmon, H
Iovita, A
Spiess, M
机构
[1] Univ Padua, Dipartimento Matemat, Padua, Italy
[2] McGill Univ, Dept Math, Montreal, PQ H3A 2K6, Canada
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Univ Nottingham, Sch Math, Div Pure Math, Nottingham NG7 2RD, England
关键词
D O I
10.1353/ajm.2002.0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Teitelbaum formulated a conjecture relating first derivatives of the Mazur-Swinnerton-Dyer p-adic L-functions attached to modular forms of even weight k greater than or equal to 2 to certain L-invariants arising from Shimura curve parametrizations. This article formulates an analogue of Teitelbaum's conjecture in which the cyclotomic Z(p) extension of Q is replaced by the anticyclotomic Z(p)-extension of an imaginary quadratic field. This analogue is then proved by using the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura curves.
引用
收藏
页码:411 / 449
页数:39
相关论文
共 30 条
[1]   Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization [J].
Bertolini, M ;
Darmon, H .
INVENTIONES MATHEMATICAE, 1998, 131 (03) :453-491
[2]   A rigid analytic Gross-Zagier formula and arithmetic applications [J].
Bertolini, M ;
Darmon, H ;
Edixhoven, B .
ANNALS OF MATHEMATICS, 1997, 146 (01) :111-147
[3]   p-adic periods, p-adic L-functions, and the p-adic uniformization of Shimura curves [J].
Bertolini, M ;
Darmon, H .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (02) :305-334
[4]   Heegner points on Mumford-Tate curves [J].
Bertolini, M ;
Darmon, H .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :413-456
[5]  
BERTOLINI M, IN PRESS 2001 BEYOND
[6]  
BOUTOT JF, 1991, ASTERISQUE, P45
[7]  
Cerednik I.V., 1976, MAT SBORNIK, V100, P59
[8]  
COLEMAN RF, UNPUB FROBENIUS MONO
[9]  
Coleman Robert F., 1994, CONT MATH, V165, P21, DOI [DOI 10.1090/CONM/165/01602, 10.1090/conm/165/01602]
[10]  
DAGHIGH H, 1997, THESIS MCGILL