Nano-imprint for near-zero reflected Si solar cells

被引:4
作者
Kim, Joondong [1 ]
Kim, Hyunyub [2 ]
Park, Hyeong-Ho [3 ]
Jeong, Chaehwan [4 ]
机构
[1] Incheon Natl Univ, Dept Elect Engn, Inchon 406772, South Korea
[2] Plansee Korea HPM Inc, Div Res, Hwaseong 18469, South Korea
[3] Korea Adv Nano Fab Ctr KANC, Device Platforms Lab, Device Engn Labs, Suwon 443270, South Korea
[4] Korea Inst Ind Technol, Appl Opt & Energy Res Grp, Gwangju 500480, South Korea
基金
新加坡国家研究基金会;
关键词
Nano-imprint; Nanopyramid; Near-zero reflection; Carrier collection efficiency; SILICON NANOWIRE; BLACK-SILICON; LIGHT; EFFICIENCY; MICROWIRE; NANOSTRUCTURES; PHOTOVOLTAICS; PASSIVATION; PERFORMANCE; PYRAMIDS;
D O I
10.1016/j.cap.2016.11.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The periodically patterned Si nanopyramid solar cell shielded with SiNx-passivation layer was fabricated using nano-imprint method. The fabricated nanopyramid Si solar cell demonstrated the near-zero reflectivity over a wide range of wavelengths. With a SiNx-coating layer, nanopyramids showed 0.366% reflection. A SiNx-coated nanopyramid Si is efficient to improve the carrier collection for broad wavelengths due to intrinsically low light-reflection of Si nanopyramid structures. SiNx-passivation effectively controls carrier collection efficiencies of nanopyramid structures, resulting in significant improves short wavelength lights. We systematically investigated optical and electrical performances of nanoscale solar cells and suggest a route to realize high-efficient nanoscale solar cells. The importance and influence of SiNx-passivation layer and nanopyramid structure in Si based solar cell were explained in detail with optical and electrical characteristics. (C) 2016 Elsevier B. V. All rights reserved.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 32 条
[1]   Core-shell silicon nanowire solar cells [J].
Adachi, M. M. ;
Anantram, M. P. ;
Karim, K. S. .
SCIENTIFIC REPORTS, 2013, 3
[2]   Optimized light absorption in Si wire array solar cells [J].
Alaeian, Hadiseh ;
Atre, Ashwin C. ;
Dionne, Jennifer A. .
JOURNAL OF OPTICS, 2012, 14 (02)
[3]   Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications [J].
Cho, Yunae ;
Gwon, Minji ;
Park, Hyeong-Ho ;
Kim, Joondong ;
Kim, Dong-Wook .
NANOSCALE, 2014, 6 (16) :9568-9573
[4]  
Dai G, 2016, J OPTOELECTRON ADV M, V18, P618
[5]   Heterojunction Silicon Microwire Solar Cells [J].
Gharghi, Majid ;
Fathi, Ehsanollah ;
Kante, Boubacar ;
Sivoththaman, Siva ;
Zhang, Xiang .
NANO LETTERS, 2012, 12 (12) :6278-6282
[6]   High-Efficiency Si/Polymer Hybrid Solar Cells Based on Synergistic Surface Texturing of Si Nanowires on Pyramids [J].
He, Lining ;
Lai, Donny ;
Wang, Hao ;
Jiang, Changyun ;
Rusli .
SMALL, 2012, 8 (11) :1664-1668
[7]   All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency [J].
Jeong, Sangmoo ;
McGehee, Michael D. ;
Cui, Yi .
NATURE COMMUNICATIONS, 2013, 4
[8]   Record High Efficiency Single-Walled Carbon Nanotube/Silicon p-n Junction Solar Cells [J].
Jung, Yeonwoong ;
Li, Xiaokai ;
Rajan, Nitin K. ;
Tayor, Andre D. ;
Reed, Mark A. .
NANO LETTERS, 2013, 13 (01) :95-99
[9]   Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization [J].
Kim, Dong Rip ;
Lee, Chi Hwan ;
Rao, Pratap Mahesh ;
Cho, In Sun ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (07) :2704-2708
[10]   Effect of the short collection length in silicon microscale wire solar cells [J].
Kim, Hyunyub ;
Kim, Joondong ;
Lee, Eunsongyi ;
Kim, Dong-Wook ;
Yun, Ju-Hyung ;
Yi, Junsin .
APPLIED PHYSICS LETTERS, 2013, 102 (19)