Dimers and the Critical Ising Model on lattices of genus > 1

被引:16
作者
Costa-Santos, R [1 ]
McCoy, BM [1 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0550-3213(01)00611-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the partition function of both Close-Packed Dimers and the Critical Ising Model on a square lattice embedded on a genus two surface. Using numerical and analytical methods we show that the determinants of the Kasteleyn adjacency matrices have a dependence on the boundary conditions that, for large lattice size, can be expressed in terms of genus two theta functions. The period matrix characterizing the continuum limit of the lattice is computed using a discrete holomorphic structure. These results relate in a direct way the lattice combinatorics with conformal field theory, providing new insight to the lattice regularization of conformal field theories on higher genus Riemann surfaces. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:439 / 473
页数:35
相关论文
共 45 条
[41]   Lattice electromagnetic theory from a topological viewpoint [J].
Teixeira, FL ;
Chew, WC .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (01) :169-187
[42]   Matchings in graphs on non-orientable surfaces [J].
Tesler, G .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (02) :198-231
[43]   CHIRAL BOSONIZATION, DETERMINANTS AND THE STRING PARTITION-FUNCTION [J].
VERLINDE, E ;
VERLINDE, H .
NUCLEAR PHYSICS B, 1987, 288 (02) :357-396
[44]  
VONWESTTENHOLZ C, 1981, DIFFERENTIAL FORMS M
[45]  
Whitney Hassler, 1957, Geometric Integration Theory