Differential evolution and differential ant-stigmergy on dynamic optimisation problems

被引:53
作者
Brest, Janez [1 ]
Korosec, Peter [2 ]
Silc, Jurij [2 ]
Zamuda, Ales [1 ]
Boskovic, Borko [1 ]
Maucec, Mirjam Sepesy [1 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
[2] Jozef Stefan Inst, Comp Syst Dept, Ljubljana 1000, Slovenia
关键词
differential evolution; ant colony optimisation; dynamic optimisation; comparison; PARTICLE SWARM OPTIMIZER; STATISTICAL COMPARISONS; ALGORITHM; CLASSIFIERS;
D O I
10.1080/00207721.2011.617899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many real-world optimisation problems are of dynamic nature, requiring an optimisation algorithm which is able to continuously track a changing optimum over time. To achieve this, we propose two population-based algorithms for solving dynamic optimisation problems (DOPs) with continuous variables: the self-adaptive differential evolution algorithm (jDE) and the differential ant-stigmergy algorithm (DASA). The performances of the jDE and the DASA are evaluated on the set of well-known benchmark problems provided for the special session on Evolutionary Computation in Dynamic and Uncertain Environments. We analyse the results for five algorithms presented by using the non-parametric statistical test procedure. The two proposed algorithms show a consistently superior performance over other recently proposed methods. The results show that both algorithms are appropriate candidates for DOPs.
引用
收藏
页码:663 / 679
页数:17
相关论文
共 61 条
[1]   Multiswarms, exclusion, and anti-convergence in dynamic environments [J].
Blackwell, Tim ;
Branke, Juergen .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (04) :459-472
[2]  
Blackwell Tim, 2008, P193, DOI 10.1007/978-3-540-74089-6_6
[3]  
Branke J., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1875, DOI 10.1109/CEC.1999.785502
[4]   Population size reduction for the differential evolution algorithm [J].
Brest, Janez ;
Maucec, Mirjam Sepesy .
APPLIED INTELLIGENCE, 2008, 29 (03) :228-247
[5]   Performance comparison of self-adaptive and adaptive differential evolution algorithms [J].
Brest, Janez ;
Boskovic, Borko ;
Greiner, Saso ;
Zumer, Viljem ;
Maucec, Mirjam Sepesy .
SOFT COMPUTING, 2007, 11 (07) :617-629
[6]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[7]   Self-adaptive differential evolution algorithm using population size reduction and three strategies [J].
Brest, Janez ;
Maucec, Mirjam Sepesy .
SOFT COMPUTING, 2011, 15 (11) :2157-2174
[8]   Dynamic Optimization using Self-Adaptive Differential Evolution [J].
Brest, Janez ;
Zamuda, Ales ;
Boskovic, Borko ;
Maucec, Mirjam Sepesy ;
Zumer, Viljem .
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, :415-422
[9]   Super-fit control adaptation in memetic differential evolution frameworks [J].
Caponio, Andrea ;
Neri, Ferrante ;
Tirronen, Ville .
SOFT COMPUTING, 2009, 13 (8-9) :811-831
[10]  
Carlisle A, 2000, IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, P429