High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies

被引:178
作者
Zhou, Min [1 ,2 ]
Li, Xianglong [1 ]
Wang, Bin [1 ]
Zhang, Yunbo [1 ]
Ning, Jing [1 ]
Xiao, Zhichang [1 ]
Zhang, Xinghao [1 ]
Chang, Yanhong [2 ]
Zhi, Linjie [1 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Sci & Technol Beijing, Dept Environm Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; assembly; self-supporting; silicon anode; lithium-ion battery; LITHIUM-ION BATTERIES; ENCAPSULATED SI NANOPARTICLES; ENERGY-STORAGE; LARGE-SCALE; COMPOSITE; NANOCOMPOSITE; ELECTRODE; HYBRID; FABRICATION; NANOTUBES;
D O I
10.1021/acs.nanolett.5b02697
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose a novel material/electrode design formula and develop an engineered self-supporting electrode configuration, namely, silicon nanoparticle impregnated assemblies of templated carbon-bridged oriented graphene. We have demonstrated their use as binder-free lithium-ion battery anodes with exceptional lithium storage performances, simultaneously attaining high gravimetric capacity (1390 mAh g(-1) at 2 A g(-1) with respect to the total electrode weight), high volumetric capacity (1807 mAh cm(-3) that is more than three times that of graphite anodes), remarkable rate capability (900 mAh g(-1) at 8 A g(-1)), excellent cyclic stability (0.025% decay per cycle over 200 cycles), and competing areal capacity (as high as 4 and 6 mAh cm(-2) at 15 and 3 mA cm(-2), respectively). Such combined level of performance is attributed to the templated carbon bridged oriented graphene assemblies involved. This engineered graphene bulk assemblies not only create a robust bicontinuous network for rapid transport of both electrons and lithium ions throughout the electrode even at high material mass loading but also allow achieving a substantially high material tap density (1.3 g cm(-3)). Coupled with a simple and flexible fabrication protocol as well as practically scalable raw materials (e.g., silicon nanoparticles and graphene oxide), the material/electrode design developed would propagate new and viable battery material/electrode design principles and opportunities for energy storage systems with high-energy and high-power characteristics.
引用
收藏
页码:6222 / 6228
页数:7
相关论文
共 57 条
[1]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[4]   Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance [J].
Chen, Shuangqiang ;
Bao, Peite ;
Huang, Xiaodan ;
Sun, Bing ;
Wang, Guoxiu .
NANO RESEARCH, 2014, 7 (01) :85-94
[5]   Building a Better Battery [J].
Chiang, Yet-Ming .
SCIENCE, 2010, 330 (6010) :1485-1486
[6]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[7]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[8]   Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries [J].
Evanoff, Kara ;
Magasinski, Alexandre ;
Yang, Junbing ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :495-498
[9]   Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon [J].
Ge, Mingyuan ;
Lu, Yunhao ;
Ercius, Peter ;
Rong, Jiepeng ;
Fang, Xin ;
Mecklenburg, Matthew ;
Zhou, Chongwu .
NANO LETTERS, 2014, 14 (01) :261-268
[10]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918