Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy

被引:53
作者
Chae, Myoung Jin [1 ,2 ]
Sharma, Ashutosh [1 ,2 ]
Oh, Min Chul [3 ]
Ahn, Byungmin [1 ,2 ]
机构
[1] Ajou Univ, Dept Mat Sci & Engn, Suwon 16499, South Korea
[2] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea
[3] Korea Inst Ind Technol, Met Forming Technol R&D Grp, Incheon 21999, South Korea
基金
新加坡国家研究基金会;
关键词
High entropy alloy; Lightweight; Powder metallurgy; Spark plasma sintering; Microstructure; MICROSTRUCTURE; MULTICOMPONENT; TEMPERATURE; EVOLUTION; BEHAVIOR;
D O I
10.1007/s12540-020-00823-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we synthesized a new Al16.6Cu16.6Fe16.6Mn16.6Mg16.6Ti16.6 lightweight high entropy alloy (LWHEA) by high energy ball milling and spark plasma sintering (SPS). The effect of milling time (15, 30, 45, and 60 h) and SPS conditions (600 and 700 degrees C) on microstructure, hardness, and density of LWHEAs were studied. The results showed that milled LWHEA is base centered cubic (BCC) structured, consisting of dual BCC1/BCC2 matrix with dispersed minor Cu2Mg precipitates and Ti. After SPS of milled samples, the BCC2 phase fraction was increased gradually. The distribution of Ti was uniform up to 45 h milled sample SPSed at 600 degrees C. However, porosity was built up beyond 45 h milling and higher SPS temperature (700 degrees C). The presence of finer secondary phases in the HEA matrix contributes to the dispersion hardening. The optimum microhardness and density of LWHEA AlCuFeMnMgTi were around 770 HV and 4.34 g cm(- 3) which is superior to other conventional alloys such as Al or Ti-based alloys.
引用
收藏
页码:629 / 638
页数:10
相关论文
共 40 条
[1]   Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy [J].
Alcala, M. D. ;
Real, C. ;
Fombella, I. ;
Trigo, I. ;
Cordoba, J. M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 :834-843
[2]  
Alshataif YA, 2020, MET MATER INT, V26, P1099
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Multicomponent and High Entropy Alloys [J].
Cantor, Brian .
ENTROPY, 2014, 16 (09) :4749-4768
[5]   Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering [J].
Chauhan, Pranjal ;
Yebaji, Sushil ;
Nadakuduru, Vijay N. ;
Shanmugasundaram, T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 820 (820)
[6]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[7]  
Dieter G.E., 1988, MECH METALLURGY, P282
[8]   Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys [J].
Dong, Yong ;
Lu, Yiping ;
Kong, Jiaorun ;
Zhang, Junjia ;
Li, Tingju .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 573 :96-101
[9]   Equal-Channel Angular Extrusion of a Low-Density High-Entropy Alloy Produced by High-Energy Cryogenic Mechanical Alloying [J].
Hammond, Vincent H. ;
Atwater, Mark A. ;
Darling, Kristopher A. ;
Nguyen, Hoang Q. ;
Kecskes, Laszlo J. .
JOM, 2014, 66 (10) :2021-2029
[10]   A precipitation-hardened high-entropy alloy with outstanding tensile properties [J].
He, J. Y. ;
Wang, H. ;
Huang, H. L. ;
Xu, X. D. ;
Chen, M. W. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
An, K. ;
Lu, Z. P. .
ACTA MATERIALIA, 2016, 102 :187-196