Suppression of sublinearity of light-current curve in 850 nm quantum well laser with asymmetric barrier layers

被引:11
作者
Zubov, F. I. [1 ]
Maximov, M. V. [1 ,5 ]
Shernyakov, Yu. M. [2 ]
Kryzhanovskaya, N. V. [1 ]
Semenova, E. S. [3 ]
Yvind, K. [3 ]
Asryan, L. V. [4 ]
Zhukov, A. E. [1 ,5 ]
机构
[1] St Petersburg Acad Univ, St Petersburg 194021, Russia
[2] RAS, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark
[4] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
[5] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
quantum well lasers; aluminium compounds; gallium arsenide; III-V semiconductors; gallium compounds; indium compounds; laser beams; current density; spontaneous emission; sublinearity suppression; light-current curve; quantum well laser; asymmetric barrier layers; light-current characteristic; current densities; maximum lasing power; catastrophic optical mirror damage; parasitic recombination; optical confinement layer; wavelength; 850; nm; power; 9; 2; W; AlGaAs-GaAs; GaInP; AlGaInAs; HETEROSTRUCTURE; 1.3-MU-M;
D O I
10.1049/el.2015.1392
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An AlGaAs/GaAs quantum well (QW) laser is fabricated with GaInP and AlGaInAs asymmetric barrier layers (ABLs) and its light-current characteristic (LCC) is compared with that of a reference conventional QW laser without ABLs. It was found that the use of the ABLs suppresses the sublinearity of the LCC at high current densities. As a result, the maximum lasing power of 9.2 W, being limited by catastrophic optical mirror damage, is achieved at a considerably lower operating current in the laser with ABLs as compared to the reference laser (12.5 against 20.2 A). The ABL effect is associated with the suppression of the parasitic recombination in the optical confinement layer, as confirmed by a decrease of the intensity of the spontaneous emission from the layer.
引用
收藏
页码:1106 / 1107
页数:2
相关论文
共 10 条
[1]   Light-current characteristic of a quantum well laser with asymmetric barrier layers [J].
Asryan, Levon V. ;
Kryzhanovskaya, Natalia V. ;
Maximov, Mikhail V. ;
Zubov, Fedor I. ;
Zhukov, Alexey E. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (14)
[2]   Bandedge-engineered quantum well laser [J].
Asryan, Levon V. ;
Kryzhanovskaya, Natalia V. ;
Maximov, Mikhail V. ;
Egorov, Anton Yu ;
Zhukov, Alexey E. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (05)
[3]   Temperature-insensitive semiconductor quantum dot laser [J].
Asryan, LV ;
Luryi, S .
SOLID-STATE ELECTRONICS, 2003, 47 (02) :205-212
[4]   Internal efficiency of semiconductor lasers with a quantum-confined active region [J].
Asryan, LV ;
Luryi, S ;
Suris, RA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (03) :404-418
[5]   Efficient High-Power Laser Diodes [J].
Crump, Paul ;
Erbert, Goetz ;
Wenzel, Hans ;
Frevert, Carlo ;
Schultz, Christoph M. ;
Hasler, Karl-Heinz ;
Staske, Ralf ;
Sumpf, Bernd ;
Maassdorf, Andre ;
Bugge, Frank ;
Knigge, Steffen ;
Traenkle, Guenther .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
[6]   1.3-MU-M MULTIQUANTUM-WELL DECOUPLED CONFINEMENT HETEROSTRUCTURE (MQW-DCH) LASER-DIODES [J].
HAUSSER, S ;
MEIER, HP ;
GERMANN, R ;
HARDER, CS .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1993, 29 (06) :1596-1600
[7]   NOVEL DESIGN OF ALGAINAS-INP LASERS OPERATING AT 1.3-MU-M [J].
KAZARINOV, RF ;
BELENKY, GL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1995, 31 (03) :423-426
[8]   16W continuous-wave output power from 100μm-aperture laser with quantum well asymmetric heterostructure [J].
Pikhtin, NA ;
Slipchenko, SO ;
Sokolova, ZN ;
Stankevich, AL ;
Vinokurov, DA ;
Tarasov, IS ;
Alferov, ZI .
ELECTRONICS LETTERS, 2004, 40 (22) :1413-1414
[9]   Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers [J].
Zhukov, Alexey E. ;
Kryzhanovskaya, Natalia V. ;
Zubov, Fedor I. ;
Shernyakov, Yuri M. ;
Maximov, Mikhail V. ;
Semenova, Elizaveta S. ;
Yvind, Kresten ;
Asryan, Levon V. .
APPLIED PHYSICS LETTERS, 2012, 100 (02)
[10]  
Zubov F. I., 2012, SEMICONDUCTORS, V46, P1027, DOI [10.1134/S1063782612080246, DOI 10.1134/S1063782612080246]